圆台侧面积公式推导过程是什么?
设圆台的上下底面半径分别为r',r,母线长为l。则其侧面展开图是一个扇环,小扇形的弧长为2πr',大扇形的弧长为2πr。设小扇形的半径为x,则大扇形的半径为x+l,则x/(x+l)=r'/r,rx=r'(x+l)。所以:S圆台侧=S大扇形 -S小扇形=πr(x+l)-πr'x=πrx+πrl -πr'x=πr'(x+l)+πrl -πr'x=π(r+r')l。圆柱的特征在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面,如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
圆台表面积的推导过程?
圆台的表面积公式:S=πr²+πR²+πRl+πrl=π(r²+R²+Rl+rl)。r-上底半径、R-下底半径、h-高、l—母线=根号下[(R-r)²+h²]设圆台的上下底面半径分别为r',r,母线长为l。则其侧面展开图是一个扇环,小扇形的弧长为2πr',大扇形的弧长为2πr。设小扇形的半径为x,则大扇形的半径为x+l,则x/(x+l)=r/R,Rx=r(x+l)。所以:S圆台侧=S大扇形 -S小扇形=πR(x+l)-πrx=πRx+πRl -πrx=πr(x+l)+πRl -πrx=π(R+r)l。扩展资料以直角梯形垂直于底边的腰所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.旋转轴叫做圆台的轴。直角梯形上、下底旋转所成的圆面称为圆台的上、下底面,另一腰旋转所成的曲面称为圆台的侧面,侧面上各个位置的直角梯形的腰称为圆台的母线。圆台的轴上的梯形的腰的长度叫做圆台的高,圆台的高也是上、下底面间的距离。圆台也可认为是圆锥被它的轴的两个垂直平面所截的部分,因此也可称为“截头圆锥”。参考资料来源:百度百科-圆台