集合之间的关系
集合之间的关系一共有4种,分别为包含、相等、互斥和对立。1、包含:集合B包含集合A。集合A中的任意一个元素都是集合B中的元素,我们称集合B包含集合A,记作“AB或BA”。2、相等:集合A与集合B相等集合A与集合B含有完全相同的元素,我们称集合A与集合B相等,记作“A=B”。3、互斥:集合A与集合B互斥或互不相容集合A与集合B中的元素完全不相同,我们称集合A与集合B互斥或互不相容,为空集,记作“A∩B=Ф”。4、对立:集合A与集合B对立或互逆如果A交B是不可能事件,那A并B则是必然事件,那我们称集合A与集合B对立或互逆,记作“A∩B=Ф,A∪B”。
集合与集合之间的关系是什么?
包含或者不包含。集合与集合之间的包含叫包含。如果集合A的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A包含于B或B包含A。集合的特性:1、确定性给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。2、互异性一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。3、无序性一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。