"技术"的英文怎么拼
technology
[tek5nClEdVi]
n.
工艺, 科技, 技术
technology
tech.nol.o.gy
AHD:[tµk-n¼l“…-j¶]
D.J.[tek6n%l*d9i8]
K.K.[tWk6n$l*d9i]
n.(名词)
【复数】 tech.nol.o.gies缩写 technol.
The application of science, especially to industrial or commercial objectives.
技术:科学的应用,尤指为了工业或商业的目的
The scientific method and material used to achieve a commercial or industrial objective.
技术:用以达到商业或工业的目的的科学方法和材料
Anthropology The body of knowledge available to a civilization that is of use in fashioning implements, practicing manual arts and skills, and extracting or collecting materials.
【人类学】 工艺学:可传授文明的知识体,用来制作工具、练习手工艺术和技能、摘录或收集材料
丰田车的技术参数英文解释?1.8T 1.8V参数问题
VVT—i.系统是丰田公司的智能可变气门正时系统的英文缩写。近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发。目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。
发动机可变气门正时技术(VVT,Variavle Valve Timing)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。
2.可变气门正时理论
合理选择配气正时,保证最好的充气功率hv,是改善发动机性能极为重要的技术问题。分析内燃机的工作原理,不难得出这样的结论:在进、排气门开闭的四个时期中进气门迟闭角的改变对充气效率hv影响最大。进气门迟闭角改变对充气效率hv和发动机功率的影响关系可以通过图1进一步给以说明。
图1中每条充气效率hv曲线体现了在一定的配气正时下,充气效率hv随转速变化的关系。如迟闭角40°时,充气效率hv是在约1800r/min的转速下达到最高值,说明在这个转速下工作能最好的利用气流的惯性充气。当转速高于此转速时,气流惯性增加,就使一部分本来可以利用气流惯性进入汽缸的气体被关在汽缸之外,加之转速上升,流动阻力增加,所以使充气效率hv下降。当转速低于此转速时,气流惯性减小,压缩行程初始时就可能使一部分新鲜气体被推回进气管,充气效率hv也下降。
图中不同充气效率hv曲线之间,体现了在不同的配气正时下,充气效率hv随转速变化的关系。不同的进气迟闭角与充气效率hv曲线最大值相当的转速不同,一般迟闭角增大,与充气效率hv曲线最大值相当的转速也增加。迟闭角为40°与迟闭角为60°的充气效率hv曲线相比,曲线最大值相当的转速分别为1800r/min和2200r/min。由于转速增加,气流速度加大,大的迟闭角可充分利用高速的气流惯性来增加充气。
改变进气迟闭角可以改变充气效率hv曲线随转速变化的趋向,以调整发动机扭矩曲线,满足不同的使用要求。不过,更确切的说,加大进气门迟闭角,高转速时充气效率hv增加有利于最大功率的提高,但对低速和中速性能则不利。减小进气迟闭角,能防止气体被推回进气管,有利于提高最大扭矩,但降低了最大功率。因此,理想的气门正时应当是根据发动机的工作情况及时做出调整,应具有一定程度的灵活性。显然,对于传统的凸轮轴挺杆气门机构来说,由于在工作中无法做出相应的调整,也就难于达到上述要求,因而限定了发动机性能的进一步提高。
3. 在北极星LH2发动机上的应用
可变正时的结果与传动 在北极星LH2发动机上,其传动方式以及进排气凸轮轴分布如图2所示,排气凸轮轴安装在外侧,进气凸轮轴安装在内侧。曲轴通过链条首先驱动排气凸轮轴,排气凸轮轴通过另外一个链条驱动进气凸轮轴。
可变气门正时调节器 如图3所示,(a)图为发动机在高速状态下,为了充分利用气体进入气缸的流动惯性,提高最大功率,进气迟闭角增大后的位置(轿车发动机通常工作在高速状态下,所以这一位置为一般工作位置)。(b)图为发动机在低速状态下,为了提高最大扭矩,进气门迟闭角减少的位置。进气凸轮轴由排气凸轮轴通过链条驱动,两轴之间设置一个可变气门正时调节器,在内部液压缸的作用下,调节器可以上升和下降。
当发动机转速下降时,可变气门正时调节器下降,上部链条被松动,下部链条作用着排气凸轮旋转拉力和调节器向下的推力。由于排气凸轮轴在曲轴正时链条的作用下不可能逆时针反旋,所以进气凸轮轴受到两个力的共同作用:一是在排气凸轮轴正常旋转带动下链条的拉力;二是调节器推动链条,传递给排气凸轮的拉力。进气凸轮轴顺时针额外转过θ角,加快了进气门的关闭,亦即进气门迟闭角减少θ度。
当转速提高时,调节器上升,下部链条被放松。排气凸轮轴顺时针旋转,首先要拉紧下部链条成为紧边,进气凸轮轴才能被排气凸轮轴带动旋转。就在下部链条由松变紧的过程中,排气凸轮轴已转过θ角,进气凸轮才开始运动,进气门关闭变慢了,亦即进气门迟闭角增大了θ度。
两种工作状态 从图2和图3不难看出,该发动机在左侧和右侧的可变气门正时调节器操作方向始终要求相反。当发动机的左侧可变气门正时调节器向下运动时,右侧可变气门正时调节器向上运动,左侧链条紧边在下边,右侧链条紧边在上边。调节器向下移动时,紧边链条都是由短变长。
当发动机处于较低转速时,要求进气门关闭的轿早,如图4(a)所示。左列缸对应的可变气门正时调节器向下运动,上部链条由长变短。左右列缸对应的进气凸轮轴在两个力的共同作用下都顺时针额外转过θ角,加快了进气门的关闭,满足了低速近期们关闭早,可提高最大扭矩的要求
当发动机处于较高转速时,要求进气门关闭得较迟,如图4(b)所示。左列缸对应的可变气门正时调节器向上运动。上部链条由短变长,下部链条由长变短。右列缸对英的可变气门正时调节器向下运动,上部链条由长变短,下部链条由短变长。在左列缸的下部链条,右列缸的上部链条同时由长变短的过程中,排气凸轮轴已转过θ度,进气凸轮才开始动作,进气门关闭变慢了,满足了高速,进气门关闭较迟,可提高最大功率的要求。
4.可变正时的微机控制
发动机的可变气门正时系统由发动机控制单元ECM进行控制,微机控制关系如图5所示。左右列缸对应的可变气门正时机构均设置了一个可变正时电磁阀。发动机在获得转速传感器的信息后,对左右列缸对应的可变气门正时电磁阀的控制方式做出正确选择控制阀体动作。当获得不同阀体位置时,通往可变气门正时调节器内的液压缸油路变换,使得可变气门正时调节器上升或下降,以至于左右列缸对应的进气门获得了不同的迟闭角。
求一段机械方面的英文翻译。。。求高手翻译
我来试一试:
根据这项工作得出的结果,我们可以推断出,一般来说,最好的机械主轴增速器的设计都是以图2a中的结构为基础的,也是生产商最常用的。在所有可能的基于图2a结构的主轴增速器设计中,表格1和表格2中所给出的结果对各种传动比,功率和最大输出转速提供了最合适的方法,也就是最小体积和最小动能法。在作者看来,这些结果可能会使与机械主轴增速器设计相关的生产商和工程师产生极大的兴趣。还有更重要的就是应该注意到图2c中的结构可以应用在高传动比(传动比高于1:10)中。
有几个地方请楼主指点一下
1.对于spindle speeder不太了解,我翻译成主轴增速器,这是在哪里使用的系统,是丝杠系统吗?
2.楼主没有给出图,Fig.2a Fig.2c的意思就是图2a 图2c的意思吧?
帮忙翻译设备资料成英文版
Features
Small, barrel-capacity, long operation, excellent cleaning results.
15mm thick steel wash head, the pressure of more than 40kg.
self-levelling system: the best way to wash first, sustained, close to the ground.
Vacuum cleaner motor, overheating the system configuration.
Vacuum cleaners, brush switch work.
Product use
Hotels, guesthouses, entertainment, nightclubs, small-scale trade, retail, schools, state-owned enterprises, public places, services, car parks, warehouses, gas stations, large stores, large-scale car display market, exhibition hall, factory .... .. and so on.
Technical parameters
Cleaning width: 510mm
Absorbent width: 800mm
Net / sewage capacity: 52L/58L
Cleaning efficiency: 1800m2 / h
Speed: 280rpm
Power: 750/1000W
Battery: 220V/120AhX2
Weight: 75kg
Size: 1250X560X1050
帮忙翻译一份资料,内容有点多,好的再追加30分
早年生活
瑞安Martinie长大,发挥正常,伊利诺伊州的低音。他的父亲给了他在12岁,第一次低音,当时他开始挑选Metallica的歌曲教自己。
他研究了爵士贝司,并赢得了一些古典声乐高中奖项。 [1]他也成了兴趣剑吞咽。
他在一梦剧院风格前卫摇滚乐坛称为残破。[编辑]断祭坛莱阿尔德里奇(吉他手)和西恩帕特里克(鼓手)前成员加入重金属的布卢明顿,伊利诺伊州乐队LowTwelve。[编辑]
编辑]设备
[编辑]贝司
主要低音:5华威拇指低音弦,乌木指板,硬铬,镍烦恼的。
录音设置:全部过Ampeg钻机,加上驻波每个劳动者的10头驾驶格雷格特利拜特的梅萨布吉4x12吉他柜增加中端和高端。 [2]
传记
瑞安Martinie长大发挥Peiora,白细胞介素低音。他研究了爵士贝司,并赢得了一些古典声乐高中奖项。他还到剑swollowing。他早期的一些影响,包括吉米亨德里克斯,披头士,海滩男孩和几个大乐队爵士乐团体。他在梦剧院风格前卫摇滚乐坛被称为断。
1996年,Mudvayne成立。他们最初有不同的大提琴手。 1997年,仍与旧的贝司手,Mudvayne发行了第一张CD:杀人,我Oughta。然而在1998年,在看到残破的祭坛,生活,Mudvayne要求瑞安加入他们的乐队。虽然他不愿留在第一残破的祭坛,他加入后,认识到他们对自己的乐队严重Mudvayne。
2000年,Mudvayne发布L.D. 50,其突破性专辑。他们来到陌生的穿着上油漆现场,面对沉重的音乐播放。 2001年,Mudvayne公布的万物的开始到结束,这是一个重新的第一张专辑,杀死释放,我Oughta,连同其单一挖掘现场录音。
秉的声音
瑞安incorperates到他扮演许多影响和风格。他是受爵士,放克,经典摇滚和重金属。他用耳光,双掴(一掴技术用于获得额外的速度)和指弹。他的演奏低音独特的方式增加了一个层面Mudvayne。
求锁相环技术资料及英文翻译
Phase-locked loop Technology (锁相环技术)
A phase-locked loop or phase lock loop (PLL) is a control system that generates a signal that has a fixed relation to the phase of a "reference" signal. A phase-locked loop circuit responds to both the frequency and the phase of the input signals, automatically raising or lowering the frequency of a controlled oscillator until it is matched to the reference in both frequency and phase. A phase-locked loop is an example of a control system using negative feedback.
Phase-locked loops are widely used in radio, telecommunications, computers and other electronic applications. They may generate stable frequencies, recover a signal from a noisy communication channel, or distribute clock timing pulses in digital logic designs such as microprocessors. Since a single integrated circuit can provide a complete phase-locked-loop building block, the technique is widely used in modern electronic devices, with output frequencies from a fraction of a cycle per second up to many gigahertz.
Earliest research towards what became known as the phase-locked loop goes back to 1932, when British researchers developed an alternative to Edwin Armstrong's superheterodyne receiver, the Homodyne. In the homodyne or synchrodyne system, a local oscillator was tuned to the desired input frequency and multiplied with the input signal. The resulting output signal included the original audio modulation information. The intent was to develop an alternative receiver circuit that required fewer tuned circuits than the superheterodyne receiver. Since the local oscillator would rapidly drift in frequency, an automatic correction signal was applied to the oscillator, maintaining it in the same phase and frequency as the desired signal. The technique was described in 1932, in a paper by H.de Bellescise, in the French journal Onde Electrique.[1]
In analog television receivers since at least the late 1930s, phase-locked-loop horizontal and vertical sweep circuits are locked to synchronization pulses in the broadcast signal.[2]
When Signetics introduced a line of monolithic integrated circuits that were complete phase-locked loop systems on a chip in 1969,[3] applications for the technique multiplied. A few years later RCA introduced the "CD4046" CMOS Micropower Phase-Locked Loop, which became a popular integrated circuit.
Applications
Phase-locked loops are widely used for synchronization purposes; in space communications for coherent carrier tracking and threshold extension, bit synchronization, and symbol synchronization. Phase-locked loops can also be used to demodulate frequency-modulated signals. In radio transmitters, a PLL is used to synthesize new frequencies which are a multiple of a reference frequency, with the same stability as the reference frequency.
[edit] Clock recovery
Some data streams, especially high-speed serial data streams (such as the raw stream of data from the magnetic head of a disk drive), are sent without an accompanying clock. The receiver generates a clock from an approximate frequency reference, and then phase-aligns to the transitions in the data stream with a PLL. This process is referred to as clock recovery. In order for this scheme to work, the data stream must have a transition frequently enough to correct any drift in the PLL's oscillator. Typically, some sort of redundant encoding is used; 8B10B is very common.
[edit] Deskewing
If a clock is sent in parallel with data, that clock can be used to sample the data. Because the clock must be received and amplified before it can drive the flip-flops which sample the data, there will be a finite, and process-, temperature-, and voltage-dependent delay between the detected clock edge and the received data window. This delay limits the frequency at which data can be sent. One way of eliminating this delay is to include a deskew PLL on the receive side, so that the clock at each data flip-flop is phase-matched to the received clock. In that type of application, a special form of a PLL called a Delay-Locked Loop (DLL) is frequently used.[4]
[edit] Clock generation
Many electronic systems include processors of various sorts that operate at hundreds of megahertz. Typically, the clocks supplied to these processors come from clock generator PLLs, which multiply a lower-frequency reference clock (usually 50 or 100 MHz) up to the operating frequency of the processor. The multiplication factor can be quite large in cases where the operating frequency is multiple gigahertz and the reference crystal is just tens or hundreds of megahertz.
[edit] Spread spectrum
All electronic systems emit some unwanted radio frequency energy. Various regulatory agencies (such as the FCC in the United States) put limits on the emitted energy and any interference caused by it. The emitted noise generally appears at sharp spectral peaks (usually at the operating frequency of the device, and a few harmonics). A system designer can use a spread-spectrum PLL to reduce interference with high-Q receivers by spreading the energy over a larger portion of the spectrum. For example, by changing the operating frequency up and down by a small amount (about 1%), a device running at hundreds of megahertz can spread its interference evenly over a few megahertz of spectrum, which drastically reduces the amount of noise seen by FM receivers which have a bandwidth of tens of kilohertz.