英语翻译!!!!!!!
俗语说“健康胜于财富”。良好的身体可以让你享受生活,实现在职场生涯的希望。另一方面,差的身体会剥夺你的一切兴趣和你周围的一切。因此健康在你的幸福生活中是必不可少的。
有很多的方法有助于您的健康。首先,从早忙到晚的应该找时间放松,因为太多的压力可能会导致业绩不佳和健康状况不佳。其次,如果你想保持健康,你必须放弃危害您的健康习惯。最后,一个健康的身体和精神经常锻炼身体是必不可少的。尽我所知,没有什么比晨练效果更好的锻炼方式。
就个人而言,我认为,健康是非常重要的。因此,我们必须放弃任何损害我们健康的坏习惯,坚持有利于我们的健康的好习惯。
!!!!!英语翻译!!!!!
正解:1
:彼得的家庭在他们呆在那里几天.the导游是告诉他们的北京旅馆他们何处参观。
2
:我们何处今天参观?
3
:我们今晨参观长城。然后Ming坟茔这afterning
4
:远离这里的长城?
5
:No.It是对北京nirth,
Ming坟茔也是到北部fo北京
6
:我们何时去颐和园?
7
:明早。
颐和园是非常美丽的。有一个大湖和它的很多有趣的地方。
8
:我们可以得知很多中国的历史
paddlepaddle如何读取本地数据?
paddlepaddle有四种数据类型和三种序列格式。四种数据类型分别是:dense_vector,sparse_binary_vector,sparse_float_vector和integer。三种序列格式分别是SequenceType.NO_SEQUENCE,SequenceType.SEQUENCE,SequenceType.SUB_SEQUENCE。详细的介绍可参考paddlepaddle官网说明。举个简单的例子:如果你的数据是 x = [1.0, 2.0, 3.0, 4.0, 5.0],那么就应该使用dense_vector,维度为输入数据的维度,这里是5,代码如下:x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(5))如果你的数据是 x = [[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], [3.0, 4.0, 5.0], [3.0, 5.0, 6.0]],那么这个数据有4个时间步长,每个步长维度为3,代码如下:x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector_sequence(3))同样的其他类似。另外,你提到reader,你可能更想知道的是如何构造reader。paddle的reader是一个生成器,返回的是一个函数。def train_reader(train_x, train_y): def reader(): for i in xrange(train_y.shape[0]): yield train_x[i], train_y[i] return reader定义好reader后,现在我们生成我们需要的训练数据data = np.array([[1, 1], [1, 2], [3, 4], [5, 2]])label = np.array([[-2], [-3], [-7], [-7]])train_reader = paddle.batch( paddle.reader.shuffle( train_reader(data, label), buf_size=100), batch_size=50)如此就可以使用train_reader进行模型训练了,test_reader的构造方式一样。
百度paddle会和python一样,成为最流行的深度学习引擎吗
1)Caffe具有出色的CNN实现功能的开发语言,在计算机视觉领域,Caffe仍然是最流行的工具包。Caffe的开发语言支持C++和Cuda,速度很快,但是由于一些历史性的遗留架构问题,它的灵活性不够强。而且对递归网络和语言建模的支持很差。Caffe支持所有主流开发系统,上手难度属于中等水平。
2)TensorFlow是一个理想的RNN
API实现,它使用了向量运算的符号图方法,使得开发的速度可以很快。TensorFlow支持的比较好的系统只有各种Linux系统和OSX,不过其对语言的支持比较全面,包含了Python、C++和Cuda等,开发者文档写得没有Caffe那么全面,所以上手比较难,在性能方面,也不如Caffe及PaddlePaddle。
3)Torch没有跟随Python的潮流,反而选择了C语言实现,用Lua语言进行封装。Torch对卷积网络的支持非常好,运行在C++、C#和Jave等工业语言的速度较快,也不需要额外的编译。但是它的上手难度也很高,对初学者缺乏规范的例子,而且需要先迈过Lua的门槛,这对初学者是很大的障碍。
4)而此次百度的PaddlePaddle性能优先并兼顾灵活,通过使用GPU异构计算来提升每台机器的数据处理能力,获得了业内“相当简洁、设计干净、稳定,速度较快,显存占用较小”等好评。
而在关键的进入门槛上,相比Google TensorFlow和Facebook
Torch,PaddlePaddle的上手难度低得多,且拥有非常优秀的业界特征,包括NLP和推荐等应用场景、对RNN很好的支持、高质量代码、以及分布式训练等,已经足以满足大多数AI场景的需求。且PaddlePaddle更加务实,可解决实际问题。
据徐伟介绍,PaddlePaddle将在本月底发布最新版本,全面支持Mac操作系统、以及Cuda8.0和GCC5.4,同时进一步优化了安装过程,可以帮助更多开放者更好地“上手”。
百度Paddle会和Python一样,成为最流行的深度学习引擎吗
摘要:PaddlePaddle的负责人徐伟认为,没有一家公司能够完全主导这个领域,要单一公司的深度学习框架完全主导该领域,就等同于用同一种程序语言开发所有的软件,未来深度学习的生态系统会因使用场景有最佳的框架使用。PaddlePaddle会和Python一样流行吗?深度学习引擎最近经历了开源热。2013年Caffe开源,很快成为了深度学习在图像处理中的主要框架,但那时候的开源框架还不多。随着越来越多的开发者开始关注人工智能,AI 巨头们纷纷选择了开源的道路:2015年9月Facebook开源了用于在Torch上更快速地训练神经网络的模块,11月Google开源 TensorFlow,2016年1月微软开源CNTK。最近,百度也宣布开源深度学习引擎 PaddlePaddle。在这场深度学习的框架之争中,究竟哪家能够胜出?PaddlePaddle的负责人徐伟认为,没有一家公司能够完全主导这个领域,要单一公司的深度学习框架完全主导该领域,就等同于用同一种程序语言开发所有的软件,未来深度学习的生态系统会因使用场景有最佳的框架使用。话虽如此,对于程序员来说,如果选择了更为流行的编程语言,就会有更多可使用的库,也能更轻松的做出好的产品。而紧跟程序语言的发展历史,我们发现最终最为流行的,总是最容易上手的。Python是非常好的例子,在编程语言排行榜上,2014年Python只有第六名。但随着大量年轻程序员的涌入,他们更愿意选择简单、易学、文档好的Python作为优先的学习对象,很快C、C++程序员很多也开始使用Python编程了。而今天发生在深度学习框架上的竞争,似乎也在重演编程语言的历史。去年TensorFlow发布的时候,对于它的质疑声不绝于耳。首先是对单机版TensorFlow的质疑,认为它在和Caffe、Torch和 Theano相比并没有优势。而在Google开源了分布式版本后,人们说它比Caffe慢,比Torch臃肿,而且不能进行太大调整。但如今在HackerNews上关于最受欢迎深度学习工具的投票,TensorFlow获得第一,得票率是第二名的接近2.6倍。程序员Vonnik解释了这个现象:使用TensorFlow的大部分都是来自Udacity课程的学生,他们大部分都没什么经验。但正是这些学生和初学者,而非那些经验丰富的资深人士,把Python变成了全球最流行的语言,也把TensorFlow推到了排名第一的位置。从Python和TensorFlow的历史来看,我们有理由认为,最为简单、易用的深度学习框架,将会在未来的竞争胜出。百度 PaddlePaddle在和几款最常用的深度学习框架TensorFlow、Torch、Caffe比较之前,我们先重点介绍新出现的PaddlePaddle。Paddle其实已经有多年历史了。早在 2013 年,百度就察觉到传统的基于单GPU的训练平台,已经无法满足深度神经网络在搜索、广告、文本、语音、图像等领域的训练需求,于是在徐伟的带领下开始搭建Paddle——一个多机并行的CPU/GPU混布的异构计算平台。Paddle从最早的开发到如今的开源,就一直以大规模数据处理和工业化的要求不断改进。我们可以看到PaddlePaddle有很多优异的特性。Github上介绍,PaddlePaddle有以下特点:· 灵活PaddlePaddle支持大量的神经网络架构和优化算法,支持任意复杂RNNs结构,高效处理batch,无需数据填充。简单书写配置文件即可实现复杂模型,比如拥有注意力(Attention)机制、外围记忆层(External Memory)或者用于神经机器翻译模型的深度时序快进网络。· 高效为了利用异构计算资源的能力,PaddlePaddle中的每一级都会进行优化,其中包括计算、内存、架构和通信。以下是几个例子:1.使用SSE/AVX内联函数、BLAS数据库(例如MKL、ATLAS、cuBLAS)和定制化的CPU/GPU Kernal来优化数学运算。2.高度优化RNNs网络,在没有Padding的情况下,也能处理不同长度的序列。3.优化的本地和分布式训练,同时支持高纬稀疏模型。· 可扩展有了PaddlePaddle,使用多个CPU和GPU以及机器来加速训练可以变得很轻松。 PaddlePaddle能通过优化通信,获得高吞吐量和性能。· 与产品的连接PaddlePaddle的部署也很简单。在百度,PaddlePaddle已经被用于产品和服务中,拥有大量用户。应用场景包括预估外卖的出餐时间、预判网盘故障时间点、精准推荐用户所需信息、海量图像识别分类、字符识别(OCR)、病毒和垃圾信息检测、机器翻译和自动驾驶等等。在PaddlePaddle简单、可扩展的逻辑下,徐伟评价说:“这将使工程师们能够快速、轻松地将深度学习技术应用到他们的产品当中,我们想让更多的人使用人工智能,人工智能对于我们的未来生活是非常重要的。”深度学习框架对比PaddlePaddle最主要的类比对象,来自UC伯克利的贾扬清开发的Caffe和Google的 TensorFlow。这是一张来自Spark Summit 2016的图,PaddlePaddle在开源前就在顶级的行业会议中进行了展示。PaddlePaddle、Caffe和TensorFlow都可以支持分布式训练,但相比之下PaddlePaddle 有很突出的优势。PaddlePaddle和Caffe在设计上有一些类似的地方,但是相比Caffe聚焦在视觉领域,PaddlePaddle可以在各种不同的场景中应用。而相比TensorFlow,PaddlePaddle的上手难度更低,也没有太多的Abstraction,速度也会更快。而在RNN的性能表现上,PaddlePaddle的速度也要优于TensorFlow。总的来说1)Caffe具有出色的CNN实现功能的开发语言,在计算机视觉领域,Caffe仍然是最流行的工具包。Caffe的开发语言支持C++和Cuda,速度很快,但是由于一些历史性的遗留架构问题,它的灵活性不够强。而且对递归网络和语言建模的支持很差。Caffe支持所有主流开发系统,上手难度属于中等水平。2)TensorFlow是一个理想的RNN API实现,它使用了向量运算的符号图方法,使得开发的速度可以很快。TensorFlow支持的比较好的系统只有各种Linux系统和OSX,不过其对语言的支持比较全面,包含了Python、C++和Cuda等,开发者文档写得没有Caffe那么全面,所以上手比较难,在性能方面,也不如Caffe及PaddlePaddle。3)Torch没有跟随Python的潮流,反而选择了C语言实现,用Lua语言进行封装。Torch对卷积网络的支持非常好,运行在C++、C#和Jave等工业语言的速度较快,也不需要额外的编译。但是它的上手难度也很高,对初学者缺乏规范的例子,而且需要先迈过Lua的门槛,这对初学者是很大的障碍。4)而此次百度的PaddlePaddle性能优先并兼顾灵活,通过使用GPU异构计算来提升每台机器的数据处理能力,获得了业内“相当简洁、设计干净、稳定,速度较快,显存占用较小”等好评。而在关键的进入门槛上,相比Google TensorFlow和Facebook Torch,PaddlePaddle的上手难度低得多,且拥有非常优秀的业界特征,包括NLP和推荐等应用场景、对RNN很好的支持、高质量代码、以及分布式训练等,已经足以满足大多数AI场景的需求。且PaddlePaddle更加务实,可解决实际问题。据徐伟介绍,PaddlePaddle将在本月底发布最新版本,全面支持Mac操作系统、以及Cuda8.0和GCC5.4,同时进一步优化了安装过程,可以帮助更多开放者更好地“上手”。所以我们可以初步下一个结论,在中国的开发环境下,Google TensorFlow和Facebook Torch的上手难度都比较高,TensorFlow最好的训练环境Google Cloud也难以在中国获得支持。而Caffe虽然已经有了多年的积累,但是毕竟目前只是在视觉领域有比较好的发展,而且相比百度能提供的产业链支持,在资源投入上可能会有比较大的局限。相比之下,坐拥中国的本土市场,上手难度低得多的PaddlePaddle,将会有更好的技术和生态的环境。也许不久的将来,PaddlePaddle就会和Python在编程语言中所做的事情一样,成为最流行的深度学习引擎。