以太这种名词最早出现在什么时候,由谁提出的
以太(Ether)(或译乙太;英语:ether或aether) 以太是希腊语,原意为上层的空气,指在天上的神所呼吸的空气。在宇宙学中,有时又用以太来表示占据天体空间的物质。
17世纪的笛卡儿是一个对科学思想的发展有重大影响的哲学家,他最先将以 以太《博弈圣经》
太引入科学,并赋予它某种力学性质。 在笛卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。以太虽然不能为人的感官所感觉,但却能传递力的作用,如磁力和月球对潮汐的作用力。
参见百度百科
ether该如何翻译。
ether就是以太的意思。
相对论简史
史蒂芬·霍金
翟宏营 张岚译
--------------------------------------------------------------------------------
十九世纪后期,科学家相信他们对宇宙的完整描述已经接近尾声。他们想象 一种叫“以太”的连续介质充满了宇宙空间,就象空气中的声波一样,光线和电 磁信号是“以太”中的波。
然而,与空间完全充满“以太”的思想相悖的结果不久就出现了:根据“以 太”理论应得出,光线传播速度相对于“以太”应是一个定值,因此,如果你沿 与光线传播相同的方向行进,你所测量到的光速应比你在静止时测量到的光速低 ;反之,如果你沿与光线传播相反的方向行进,你所测量到的光速应比你在静止 时测量到的光速高。但是,一系列实验都没有找到造成光速差别的证据。
在这些实验当中,阿尔波特·迈克尔逊和埃迪沃德·莫里1887年在美国俄亥 俄州克里夫兰的凯斯研究所所完成的测量,是最准确细致的。他们对比两束成直 角的光线的传播速度,由于围着自转轴的转动和绕太阳的公转,根据推理,地球 应穿行在“以太”中,因此上述成直角的两束光线应因地球的运动而测量到不同 的速度,莫里发现,无论是昼夜或冬夏都未引起两束光线光速的不同。不论你是 否运动,光线看起来总是以相对于你同样的速度传播。
爱尔兰物理学家乔治·费兹哥立德和荷兰物理学家亨卓克·洛仑兹,最早认 为相对于“以太”运动的物体在运动方向的尺寸会收缩,而相对于“以太”运动 的时钟会变慢。而对“以太”,费兹哥立德和洛仑兹当时都认为是一种真实存在 的物质。
这时候,工作在瑞士首都伯尔尼的瑞士专利局的一个名叫阿尔波特·爱因斯 坦的年轻人,插手“以太”说,并一次性永远地解决了光传播速度的问题。
在1905年的文章中,爱因斯坦指出,由于你无法探测出你是否相对于“以太 ”的运动,因此,关于“以太”的整个概念是多余的。相反,爱因斯坦认为科学 定律对所有自由运动的观察者都应有相同的形式,无论观察者是如何运动的,他 们都应该测量到同样的光速。
爱因斯坦的这个思想,要求人们放弃所有时钟测量到的那个普适的时间概念 ,结果是,每个人都有他自己的时间值:如果两个人是相对静止的,那么,他们 的时间就是一致的;如果他们间存在相互的运动,他们观察到的时间就是不同的 。
大量的实验证明了爱因斯坦的这个思想是正确的,一个绕地球旋转的精确的 时钟,与存放在实验室中的精确时钟确有时间指示上的差别。如果你想延长你的 生命,你就可以乘飞机向东飞行,这样可以叠加上地球旋转的速度,你无论如何 可以获得那零点几秒的生命延长,也可以以此弥补因你进食航空食品而带来的损 害。
爱因斯坦认为的对所有自由运动的观察者自然定律都相同这个前提,是相对 论的基础,这样说的原因是因为,这个前提隐含了只有相对运动是重要的。虽然 相对论的完美与简洁折服了许许多多科学家和哲学家,但是仍然有很多的相反意 见。爱因斯坦摒弃了19世纪自然科学的两个绝对化观念:“以太”所隐含的绝对 静止和所有时钟所测量得到的绝对或普适时间。人们不禁要问:相对论是否隐含 了任何事物都是相对的而不再会有概念上绝对的标准了?
这种不安从20世纪20年代一直持续到30年代。1921年,爱因斯坦由于对光电 效应的贡献,得到了诺贝尔物理奖【注1】,但由于相对论的复杂及有争议,诺贝 尔奖的授予只字未提相对论。
到现在我仍然每周收到2至3封信,告诉我爱因斯坦错了。尽管如此,现在相 对论被科学界完全接受,相对论的预言已经被无数的实验所证实。
相对论的一个重要结果是质量与能量的关系。爱因斯坦的假定光速对所有的 观察者是相同的,暗示了没有可以超过光速运行的事物,如果给粒子或宇宙飞船 不断地供应能量,会发生什么现象呢?被加速物体的质量就会增大,使得很难进 行再快的加速,要想把一个粒子加速到光速是不可能的,因为那需要无限大的能 量。质量与能量的等价关系被爱因斯坦总结在他的著名的质能方程“E=mc2"中 ,这或许是能被大街小巷妇孺皆知的唯一一个物理方程了。
铀原子核裂变成两个小的原子核时,由于很小一点的质量亏损,会释放出巨 大的能量。这就是质能方程众多结论中的一个。1939年,第二次世界大战正阴云 密布,一组意识到裂变反应应用的科学家说服爱因斯坦战胜自己是和平主义者的 顾忌,去给当时的美国总统富兰克林·德拉诺·罗斯福写信,劝说美国开始核研 究计划,这铸就了曼哈顿工程和1945年在广岛上空原子弹的爆炸。有人因原子弹 而责备爱因斯坦发现了质能关系,但是这种责难就像因有飞机遇难折戟而责备牛 顿发现了万有引力一样。爱因斯坦没有参与曼哈顿工程的任何过程并惊惧于那巨 大的爆炸。
尽管相对论与电磁理论的有关定律结合得非常完美,但它与牛顿的重力定律 不相容。牛顿的重力理论表明,如果你改变空间的物质分布,整个宇宙中重力场 的改变是同时发生的,这不但意味着你可以发送比光速传播更快的信号(这是为 相对论所不容的),而且需要绝对或普适的时间概念,这又是为相对论所抛弃的 。
爱因斯坦从1907年就知道了这个不相容的困难,那时他还在波恩的专利局工作,但直到1911年,爱因斯坦在德国的布拉格工作时,他才深入思考这个问题。 爱因斯坦意识到加速与重力场的密切关系,在密封厢中的人,无法区分他自己对 地板的压力是由于他处在地球的重力场中的结果,还是由于在无引力空间中他被 火箭加速所造成的。(这些都发生在“星际旅行”【注2】的时代之前,爱因斯坦 是想到人处在电梯中而不是宇宙飞船中。但我们知道,如果不想让电梯碰撞的事 情发生,你不能在电梯中加速或自由坠落许久)如果地球是完全平整的,人们可 以说苹果因重力落在牛顿头上,与因牛顿与地球表面加速上升而造成了牛顿的头 撞在苹果上是等价的。但是,这种加速与重力的等价在地球是圆形的前提下不再 成立,因为在地球相反一面的人将会被反向加速,但两面观察者之间的距离却是 不变的。
1912年在转回瑞士苏黎士时,爱因斯坦来了灵感,他意识到如果真实几何中 引入一些调整,重力与加速的等价关系就可以成立。爱因斯坦想象,如果三维空 间加上第四维的时间所形成的空间-时间实体是弯曲的,那结果是怎样的呢?他 的思想是,质量和能量将会造成时空的弯曲,这在某些方面或许已经被证明。像 行星和苹果,物体将趋向直线运动,但是,他们的径迹看起来会被重力场弯曲, 因为时空被重力场弯曲了。
在他的朋友马歇尔·格卢斯曼的帮助下,爱因斯坦学习弯曲空间及表面的理论,这些抽象的理论,在玻恩哈德·瑞曼将它们发展起来时,从未想到与真实世 界会有联系。1913年,在爱因斯坦与格卢斯曼合作发表的文章中,他们提出了一 个思想:我们所认识的重力,只是时空是弯曲的事实的一种表述。但是,由于爱 因斯坦的一个失误(爱因斯坦是个真正的人,也会犯错误),他们当时未能找出 联系时空弯曲的曲率与蕴含于其中的能量质量的关系方程。
在柏林时,爱因斯坦继续就这个问题进行工作,他没有了家庭的烦扰【注3】 ,在很大程度上也未被战争所影响。1915年11月,爱因斯坦最终发现了联系时空 弯曲与蕴含其中的能量质量的关系方程式。1915年夏天,在访问哥廷根大学期间 ,爱因斯坦曾与数学家戴维·希尔波特讨论过他的这个思想,希尔波特早于爱因 斯坦几天也找到了同样的方程式。尽管如此,正如希尔波特所承认的,这种新理 论的荣誉应属于爱因斯坦,而正是爱因斯坦将重力与弯曲时空联系起来。这还应 感谢文明的德国,因为,是在那里,在当时的战争期间,这样的科学讨论及交流 仍能够得以不受影响地进行,与20年后(指二战,编者注)所发生的事形成多么 大的对比!
关于弯曲时空的新理论叫做“广义相对论”,以区别与原初不包含重力的理 论,而那个理论被改称为“狭义相对论”。1919年,“广义相对论”被以颇为壮 观的形式证明:当时的一只英国科学考察队远征到西非,在日食期间观察到天空 中太阳附近一颗恒星位置的微小移动。正如爱因斯坦所预言的:恒星所发出的光 线,在经过太阳附近时,由于太阳的引力而弯曲了。这是证明时空弯曲的一个直 接证据,从公元前300年欧几里得完成他的《原本》后,这是一个人类感知他们存 在于宇宙的最大的革命性的更新。
爱因斯坦的“广义相对论”将“时空”由被动的事件发生背景转化为动态宇 宙中的主动参与者,这导致了居于科学前沿的一个巨大困难,在20世纪结束之际 仍未解决。宇宙充满了物质,物质又导致时空弯曲而使得物体相互聚集。在用“ 广义相对论”解释静态的宇宙时,爱因斯坦发现他的方程式是无解的,为变通他 的方程式而适应静态宇宙,爱因斯坦加入了一个称为“宇宙常量”的项,这个“ 宇宙常量”将时空再弯曲,以使所有的物体分离开,“宇宙”常量引入的排斥效 果将平衡物体的相互吸引作用而允许宇宙的长久平衡。
事实上,这成了在理论物理历史上人类丧失的最大机遇之一。如果爱因斯坦 继续在这一方向上工作下去而不是变通的引入“宇宙常量”,他可能能够预言宇 宙是在扩张还是在收缩。然而,直到20年代,当坐落在威尔逊山上的100英寸的天 文望远镜观察到离我们越远的星系在以越快的速度远离我们时,宇宙依时间而变 化的可能性才被郑重地加以考虑。换一句话说,宇宙正在扩展,任何两个星系之 间的距离正在随着时间的推移而稳定地增加。爱因斯坦后来称“宇宙常量”的提 出是他一生中最严重的错误。
“广义相对论”彻底改变了人们对宇宙的起源及归宿的讨论方向。静止的宇 宙可能会永久存在,或者说,在过去的某个时间,当这一静止的宇宙产生时,它 就已经是现在的形态了。从另一方面来说,如果现在星系们正在彼此远离,它们 在过去的时间里应该是彼此之间更为接近的。在大约150亿年前,它们甚至可能彼 此接触,相互重叠,而且它们的密度可能是无穷大。根据“广义相对论”,宇宙 大爆炸标志着宇宙的起源,时间的开始。从这个意义上说,爱因斯坦不仅仅是过 去100年中最伟大的人物,他应该获得人们更长久的尊重。
在黑洞中,空间与时间是如此的弯曲,以至于黑洞吸收了所有的光线,没有 一丝光线可以逃逸。“广义相对论”因此预言时间应终止于黑洞中。但是,广义 相对论方程并不适用于时间的开始与终结这两种极端情形。因而这一理论并不能 揭示从大爆炸中究竟产生了什么。一些人认为这是上帝万能的一种象征,上帝可 以以他想要的方式来开创宇宙。
但是另一些人(包括我自己)认为宇宙的起源应该服从于一种任何时候都成 立的普适原理。在朝这一方向的努力中,我们已取得了一些进展,但距完全理解 宇宙的起源还相差甚远。广义相对论不能适用于大爆炸的原因在于,它与20世纪 初另一伟大的概念性的突破---量子理论并不相容。量子理论的最初提出是在 1900年,当时在柏林工作的麦克斯·普朗发现,从红热物体上发出的辐射可以解 释为光线是以有特定大小的能量单元发出的,普朗克把这种能量单元称为量子。 打一个比方,辐射像是一包包的白糖,在超级市场里,并不是你想要多少的量都 行,你只能买每袋一磅的包装。1905年,爱因斯坦在他撰写的一篇论文中,提到 普朗克的量子假设可能可以解释光电效应,即某些金属在收到光照时会释放电子 的现象。这一效应是现代光探测器和电视照相得以应用的基础,爱因斯坦也因此 获得了1921年的诺贝尔奖。
爱因斯坦对量子构想的研究直至20年代,当时哥本哈根的华纳·海森堡、剑 桥的保尔·狄拉克以及苏黎士的埃文·薛定谔提出了量子机制,从而展示了描述 现实的新画卷。根据他们的理论,小粒子不再具有确定的位置和速度,相反,小 粒子的位置测得越精确,它的速度测量就愈不准确。反之亦然。
对于这种基本定律中的任意性和不可预知性,爱因斯坦惶惑不已,他最终未 能接受量子机制。他的著名的“上帝并未在掷骰子”的格言就表达出了这一感受 。虽然如此,大多数科学家都接受了全新的量子机制定律,并对其适用性加以承 认,因为这些定律不但与实验结果吻合极好,而且可以解释许多先前无法解释的 现象。这些定律成了当代化学、分子生物学以及电子学得以发展的基础,也是在 过去半个世纪内改变整个世界的科技基石。
1933年,纳粹统治了德国,爱因斯坦离开了这个国家,也放弃了他的德国国 籍。他在新泽西州普林斯顿的尖端科学研究所度过了他生命最后22年的时光。纳 粹发起了一场反对“犹太科学”及犹太科学家的运动(犹太科学家被驱逐是德国 未能建成原子弹的原因之一),而爱因斯坦及他的相对论是这场运动的主要目标 。当被告知一本名为《反对爱因斯坦的100位科学家》的书得以出版时,爱因斯坦 回答,为什么要100位?一位就足以证明我错了,如果我真的错了的话。
二战后,他敦促盟军设立一个全球机构以控制核武器。1952年,他被刚成立 的以色列授予总统职位,但他拒绝了。“政治是暂时的,”他写道,“而方程式 是永恒的。”广义相对论方程是他最好的墓志铭和纪念碑。它们与宇宙一起永不 腐朽。
在过去的100年中,世界经历了前所未有的变化。其原因并不在于政治,也不 在于经济,而在于科学技术---直接源于先进的基础科学研究的科学技术。没 有科学家能比爱因斯坦更代表这种科学的先进性。(本文略有删节)
【注1】爱因斯坦早在1919年与他的苏黎士专门学院同学、塞尔维亚族妻子米 列娃·玛莉科离婚时,就已经答应将诺贝尔奖给予她。当时爱因斯坦已经确信自 己将可以得到诺贝尔奖,只是没有想到获奖是由于他对光电效应的贡献。
【注2】星际旅行,“StarTrek"是全美正在上映的热门电视剧。
【注3】米列娃·玛莉科初陪爱因斯坦到柏林,旋即离开,携他们的两个儿子 回瑞士,三年后离婚。后爱因斯坦与有一个女儿的当时离异的表妹爱尔莎结合, 爱尔莎给予了爱因斯坦无微不至的关怀,伴他度过探索“广义相对论”的岁月。 玛莉科对爱因斯坦创立“狭义相对论”有所贡献,但她从未提起,离婚后她从事 数学和物理教学。
(End)
网红这个名词最早什么时候出现的
文字时代的网络红人最早的网络红人,在互联网的56k时代甚至更早,那是属于文字激扬的时代,培育在那一代的网络红人,他们共同的特点是以文字安身立命并走红。图文时代的网络红人当互联网已经进入高速的图文时代,这时候的红人开始如时尚杂志绚丽多彩起来,在这样的时代,网络女性占尽优势,以图载文载人。如果要问为什么,原因就是这时候的互联网更有读图时代的味道。宽频时代的网络红人当互联网越来越宽,进入了宽频时代,网络歌曲的流行也是宽频时代红人到来的显著特征
核磁共振波谱分析法答案 什么是化学位移,影响化学位移的因素有哪些
四大波谱是:
核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外(UV)。
紫外:四个吸收带,产生、波长范围、吸光系数
红外:特征峰,吸收峰影响因素、不同化合物图谱联系与区别
核磁:N+1率,化学位移影响因素,各类化合物化学位移
质谱:特征离子、重排、各化合物质谱特点(如:有无分子离子峰等)
关于乙醚 的知识
乙醚三维化学结构式乙醚(ethylether),一种醚。古老的合成有机化合物之一。无色液体,极易挥发,气味特殊;极易燃,纯度较高的乙醚不可长时间敞口存放,否则其蒸气可能引来远处的明火进而起火。凝固点-116.2℃,沸点34.5℃,相对密度0.7138(20/4℃)。
简介
中文名称:乙醚 中文别名:二乙(基)醚,麻醉乙乙醚结构式醚 英文名称:Ethyl ether;Diethyl ether 英文别名:diethyl ether, ehtyl ether, ethyl oxide CAS No.:60-29-7 分子式:C4H10O;(CH3CH2)2O 结构式:CH3CH2OCH2CH3或C2H5OC2H5 分子量:74.12 CAS编号:60-29-7 危险标记:7(低闪点易燃液体) 包装方法:小开口钢桶;安瓿瓶外普通木箱;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外普通木箱。
[编辑本段]基本性质
乙醚能与乙醇、丙 酮、苯、氯仿等混溶,水在乙醚中的溶解度为乙醚体积的乙醚色谱图1/50,乙醚在12℃ 水中的溶解度为水体积的1/10。与10倍体积的氧混合成的混合气体,遇火或电火花即可发生剧烈爆炸,生成二氧化碳和水蒸气。长时间与氧接触和光照,可生成过氧化乙醚,后者为难挥发的粘稠液体,加热可爆炸,为避免生成过氧化物,常在乙醚中加入抗氧剂,如二乙氨基二硫代甲酸钠。性稳定,其蒸气在450℃以下不发生变化,550℃时开始分解。100℃以下,与酸、碱不起作用。与三氟化硼作用形成乙醚化的三氟化硼,在烃基化、酰化、聚合、失水、缩合等反应中用作催化剂。可直接氯化(冷却下)生成一氯、多氯和全氯醚。
[编辑本段]理化分析
一、物理性质
分子量:74.12 熔点: 一116.2℃ 沸点: 34.6℃ 液体密度(20℃): 713.5kg/m3 气体-密度: 2.56kg/m3 相对密度(45℃): 2.6 临界温度: 193.55℃ 临界压力: 3637.6kPa 临界密度: 265kg/m3 气化热(34.6℃): 351.16kJ/kg 比热容(35℃,101.325kPa): Cp=1862.13J/(kg·K) Cv=1724.0lJ/(kg·K) (液体0℃) 2214.82J/(kg·K) 比热比(35℃,101.325kPa): Cp/Cv=1.08 蒸气压(20℃): 58.93kPa 粘度(气体,0℃): 0.000684Pa·s (液体,0℃): 0.002950Pa·s 表面张力(20℃): 17.0mN/m 导热系数(0℃): 1298.3X105W/(m·K) 折射率(液体,24.8℃): 1.3497 闪点: 一45℃ 燃点 160℃ 爆炸界限: 1.85%/36.5% 燃烧热(25℃): 2752.9kJ/mol 最大爆炸压力: 902.2lkPa 产生最大爆炸压力的浓度: 4.1% 溶解度(20℃):6.89%(重量)
二、化学性质
1. 比较稳定,很少与除酸之外的试剂反应。 2. 在空气中会慢慢氧化成过氧化物,过氧化物不稳定,加热易爆炸,应避光保存。
[编辑本段]制法
一、实验室制法
1.将乙醇与浓硫酸化合物加热到140℃时可发生分子间脱水生成产物乙醚.浓硫酸在这里作脱水剂\催化剂. 2.方程式:2 CH3-CH2-OH —--(浓H2SO4/140℃)---→ CH3-CH2-O-CH2-CH3 反应类型:取代反应
二、工业制法
工业上可在氧化铝催化下 ,于300℃由乙醇失水制得。是重要的溶剂,可溶解多种有机物,常用作天然产物的萃取剂或反应介质。有些物质能溶于含乙醇或水的乙醚中。有些无机物在乙醚中也有一定的溶解度。例如小量的硫或磷,但溴、碘、氯化铁、氯化金在乙醚中有较大的溶解度。是首次试用成功的外科麻醉剂。
[编辑本段]用途
做蜡、脂肪、油、香料、生物碱、橡胶等的溶剂,麻醉剂。
[编辑本段]应急处置
一、人体防护
皮肤接触:脱去被污染的衣着,用大量流动清水冲洗。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给予输氧。如呼吸停止,立即进行人工呼吸。就医。 食入: 饮足量温水,催吐。就医。 呼吸系统防护:空气中浓度超标时,佩戴过滤式防毒面具(半面罩)。 眼睛防护:必要时,戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴橡胶耐油手套。
二、其他防护
其他防护:工作现场严禁吸烟。注意个人清洁卫生。 泄漏应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用活性炭或其他惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、二氧化碳、干粉、砂土。用水灭火无效。
[编辑本段]管理
一、操作的管理
密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂接触。灌装适量,应留有5%的空容积。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。
二、储存的管理
通常商品加有稳定剂。储存于阴凉、通风的库房。远离火种、热源。库温不宜超过26℃。包装要求密封,不可与空气接触。应与氧化剂等分开存放,切忌混储。不宜大量储存或久存。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。
三、运输的管理
采用铁路运输,每年 4~9月使用小开口钢桶包装时,限按冷藏运输。运输时运输车辆应配备相应品种和数量的消防器材及泄漏应急处理设备。夏季最好早晚运输。运输时所用的槽(罐)车应有接地链,槽内可设孔隔板以减少震荡产生静电。严禁与氧化剂、食用化学品等混装、混运。运输途中应防曝晒、雨淋,防高温。中途停留时应远离火种、热源、高温区。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。严禁用木船、水泥船散装运输。
四、弃的管理
加入碳酸氢钠溶液,中和稀释后,用水冲入废水系统。
[编辑本段]毒理学资料
一、急性毒性
LD50:1215 mg/kg(大鼠经口)。LC50:221190 mg/m3,2 h(大鼠吸入)。人吸入最小中毒浓度(刺激):200 ppm;人经口最小致死剂量:420 mg/kg。乙醚对人的麻醉浓度为109.8~196.95 g/m3(3.6%~6.5 %)。212.1~303 g/m3(7%~10%)可引起呼吸抑制;当超过303 g/m3时,对人有生命危险。连续吸入6.06 g/m3(2000 ppm)可引起一些人头晕;吸入9.09~21.21 g/m3浓度的乙醚,未出现任何临床症状。
二、代谢
乙醚经呼吸道吸入,在肺泡很快被吸收,由血液迅速进入脑和脂肪组织中。吸入的乙醚,有87%未经变化从呼气中排出,1%~2%从尿中排出。一部分乙醚在肝脏经微粒体酶转化为乙醛、乙醇、乙酸和二氧化碳,后经呼吸和尿排出。停止接触后,乙醚在血液中的含量很快下降,而在脂肪组织中仍保持相当高的浓度。
三、中毒机理
主要作用于中枢神经系统,引起全身麻醉。一般认为,乙醚引起的意识障碍与脑干网状结构上行激活系统抑制有关,而肌张力减弱则是抑制脊髓所致。乙醚还可抑制中枢突触递质——乙酰胆碱的释放。 乙醚经呼吸道吸收,在肺泡内很快被吸收,由血液迅速进入脑和脂肪组织中。脑组织中乙醚含量较高,是因为脑内血流量大,含脂类丰富及乙醚能透过血脑屏障之故。
四、刺激性
家兔经眼:40 mg,重度刺激。家兔经皮开放性刺激试验:500 mg,轻度刺激。
[编辑本段]药用常识
一、适应范围
由于乙醚的优点少而缺点严重,又能引起燃烧爆炸,使用的医用乙醚范围逐年减少,世界上各大医院早已不用。 健康情况佳的病人理论上均适用[1]。
二、用法用量
多种形式的吸入全麻装置如开放、半开放、半关闭或全关闭等,乙醚均适用。与碱石灰接触不变质。成人诱导期间吸气内乙醚蒸气浓度,可逐渐按需增至 10—15%,维持期间以 4一6%为最常用。小儿诱导用 4一6%不等,年龄愈小浓度应愈低,维持用 2—4%。吸入全麻过程中,应依据病人情况和手术要求,随时调整吸气内乙醚浓度,并设法避免体内有较多的乙醚蓄积于脂肪和肌肉。
三、给药说明
(1)乙醚为挥发性液体,装入内壁镀铜的金属罐或有色玻璃瓶中,密封;不得有漏气。 (2)一般每瓶(或罐)为 60或 120ml,不要超过 200ml。用剩的经过 12—24小时即报废。 (3)贮存超过二年的,应重新检验,符合规定才能使用。
四、禁用慎用
遇有急性或慢性呼吸系统疾病、水电解质失调、代谢性酸血症、糖尿病、颅内压已偏高、肝肾功能欠佳、黄疸明显等患者,均禁用。 糖尿病,肝功能严重损害,呼吸道感染或梗阻及消化道梗阻病人忌用。
五、不良反应
喉痉挛、暂时性血清转氨酶升高、抽搐、急性胰腺炎。用乙醚麻醉会对免疫反应有损害。1例用乙醚全麻后出现接触性皮炎和全身性过敏反应。
六、制法简介
将乙醇与浓硫酸化合物加热到140℃时可发生分子间脱水生成产物乙醚.浓硫酸在这里作脱水剂\催化剂.方程式:2 CH3-CH2-OH —--(浓H2SO4/140℃)---→ CH3-CH2-O-CH2-CH3+H2O
七、应用注意
①贮存与使用时应避开明火,以免燃烧或爆炸。 ②开瓶后室温下超过24小时或在冰箱内保存3日后禁用。 ③乙醚氧化变质不宜再用。简易检验法:将乙醚滴于滤纸上,待其挥发后,若留有浅黄色痕迹,即表示已变质。
八、主要特点
1、优点
①镇痛作用强,又可促使骨骼肌松弛; ②3—4倍于常用量时,对循环功能的抑制才达到危险的地步,故较安全; ③直接的麻醉死亡率低。
2、缺点
①易燃烧爆炸,当空气中含量为 1.83—48.0%,氧气中 2.1—82.5%,即有此可能;乙醚的蒸气密度较空气大 2—6倍,常下降在手术室地面,容易着火; ②气味不佳,刺激性强,能促使口鼻腔和气管支气管粘膜、粘液腺引分泌增多,气道难以保证通畅,吸入全麻诱导中,屏气、呛咳、喉或支气管痉挛时常发生,术后肺部并发症多; ③化学性质不稳定,暴露于空气中,遇光或受热即变质,生成过氧化物或乙醛,刺激性更强;纯度要求高,微量的杂质即增加全麻诱导和维持的困难,事后并发症更多; ④全麻的作用起效慢,诱导期不仅太长,且可有兴奋阶段,临床上需另用全麻诱导药; ⑤苏醒期间胃肠道紊乱常见,恶心呕吐发生率可高达 50%以上; ⑥乙醚麻醉时,胆汁分泌减少,肝糖原耗竭,血糖升高,这些改变对正常人可无重要意义,但对核尿病患者或肝脏病变者则未必然。
九、兽药
【兽用制剂、用法与用量】 犬麻醉前皮下注射盐酸吗啡5-10毫克/千克体重、硫酸阿托品0.1毫克/千克体重,然后用麻醉口罩吸入乙醚,直至出现麻醉指征为止。猫、兔可置入麻醉箱,吸入乙醚蒸气,或用麻醉口罩吸入。用于大白鼠、小白鼠、蛙类,将动物置于玻璃钟罩或烧杯中,将蘸有乙醚的棉球投入其中,让动物吸入。鸡、鸽先将其固定,将头放入装蘸有乙醚棉球的烧杯中吸入。
PM和PAM在化学是什么意思,有什么作用。
PM:丙二醇甲醚属二元醇醚类溶剂,丙二醇醚对人体的毒性低于乙二醇醚类产品,属低毒醚类丙二醇甲醚有微弱的醚味,但没有强刺激性气味,使其用途更加广泛安全PAM:聚丙烯酰胺具有高分子化合物的水溶性以及其主链上活泼的酰基因而在石油开采、水处理、纺织印染、造纸、选矿洗煤、医药、制糖、养殖、建材、农业等行业具有广泛的应用,有“百业助剂”、 “万能产品”之称
波谱分析中,ether是指什么化合物
ether
英 [ ˈi:θə(r) ] 美 [ ˈiθɚ ]
n.醚;乙醚
水分子中的两个氢原子均被烃基取代的化合物称为醚。醚类化合物都含有醚键。醚是由一个氧原子连接两个烷基或芳基所形成,醚的通式为:R–O–R。它还可看作是醇或酚羟基上的氢被烃基所取代的化合物。醚类中最典型的化合物是乙醚,它常用于有机溶剂与医用麻醉剂。醚类化合物的应用常见于有机化学和生物化学,它们还可作为糖类和木质素的连接片段。
波谱分析主要是以光学理论为基础,以物质与光相互作用为条件,建立物质分子结构与电磁辐射之间的相互关系,从而进行物质分子几何异构、立体异构、构象异构和分子结构分析和鉴定的方法。