这个公式又可以继续推导,理想气体的体积与压强的乘积成为一定的常数,即: (constant)。
如果在温度相同的状态下,A、B两种状态下的气体关系式可表示成:
习惯上,这个公式会写成:
波义耳创建的理论——波义耳定律,是第一个描述气体运动的数量公式,为气体的量化研究和化学分析奠定了基础。该定律是学习化学的基础,学生在学习化学之初都要学习它。
波义耳具有实验天赋,还证实了气体像固体一样是由原子构成的。但是,在气体中,原子距离较远,互不连接,所以它们能够被挤压得更密集些。早在公元前440年,德谟克里特就提出原子的存在,在随后的两千年里人们一直争论这个问题。通过实验,波义耳使科学界相信原子确实是存在的。
介绍波义耳生于伯爵之家,是英国科学协会的会员。在1662年科学协会的会议上,罗伯特·胡克(Robert Hooke)宣读了一篇论文,论文描述法国关于“空气弹性”的实验。17世纪,科学家对空气特征产生了浓厚兴趣。
法国科学家制造了一个黄铜气缸,中间装有活塞,安装得很紧。几个人用力按下活塞,压缩缸里的空气。然后,他们松开活塞,活塞弹回来,但是没有全部弹回来。不论他们隔多长时间做一次实验,活塞总是不能全部弹回来。
通过这项实验,法国科学家声称空气根本不存在弹性,经过压缩,空气会保持轻微的压缩状态。
波义耳宣称法国科学家的实验不能说明任何问题。他指出,活塞之所以不能全部弹回来,是因为他们使用的活塞太紧。有人反驳道,如果活塞稍松,四周就会漏气,影响实验。
罗伯特·波义耳许诺要制造一个松紧适中的绝好活塞,证明上述实验是错误的。
两周后,罗伯特·波义耳手持“U”形大玻璃管站在众会员面前。这个“U”形玻璃管是不匀称的,一支又细又长,高出3英尺多,另一支又短又粗,短的这支顶端密封,长的那只顶端开口。
波义耳把水银倒进玻璃管中,水银盖住了“U”形玻璃管的底部,两边稍有上升。在封闭的短管中,水银堵住一小股空气。波义耳解释,活塞就是任何压缩空气的装置,水银也可以看作“活塞”。向法国实验所期望的那样,波义耳的做法不会因为摩擦而影响实验结果。
波义耳记录下水银重量,在水银和空气交界处刻了一条线。他向长玻璃管中滴水银,一直把它滴满。这时,水银在短玻璃管中上升到一半的高度。在水银的挤压下,堵住空气的体积变成不到原来的一半。
在短玻璃管上,波义耳刻下了第二条线,标示出里面水银的新高度和堵住空气的压缩体积。
然后,通过“U”形玻璃管底部的阀门,他把水银排出,直到玻璃活塞和水银的重量与实验开始时的重量完全相等。水银柱又回到它实验开始的高度,堵住的空气又回到它当初的位置。空气果真有弹性,法国科学家的实验是错误的,波义耳是正确的。
罗伯特·波义耳用玻璃活塞继续实验,发现了很多值得注意的事情。当他向堵住的空气施加双倍的压力时,空气的体积就会减半;施加3倍的压力时,体积就会变成原来的1/3。当受到挤压时,空气体积的变化与压强的变化总是成比例。他创建了一个简单的数学等式来表示这一比例关系,现在我们称之为“波义耳定律”。就认识大气、利用大气为人类服务而言,这一定律是极为重要的。
在化学和物理学研究上都有杰出贡献。虽然他的化学研究仍然带有炼金术色彩,他的《怀疑派的化学家》一书仍然被视作化学史上的里程碑。
求学波义耳生于爱尔兰沃特福德郡的莱斯城堡,是当时英国最富有的人“伟大的科克伯爵”理查德·波义耳的第七个儿子。童年体弱但早慧,学会拉丁语和法语。八岁进入他父亲朋友任教务长的伊顿公学。在伊顿期间他不喜欢参加体育锻炼并且常常生病。三年之后他在法国家庭教师陪伴下出国学习,在日内瓦度过了两年。1641年前往意大利佛罗伦萨,研究伽利略的天文学着作与实验。1643年理查德·波义耳死于战争,为他留下了多西特庄园和遗产。1644年他回到爱尔兰,看守庄园同时开始了他的科学研究。
科学研究与发现1646年波义耳应邀加入了由威尔金斯组织的群众性科学社团——“哲学学会”(又称无形学院)这一社团成员常常在波义耳的庄园聚会交流。1648 年克伦威尔任命威尔金斯主持对牛津大学的改革,威尔金斯邀请波义耳到牛津去工作。1654年波义耳前往牛津,在自己的祖传领地上建立了实验室,聘请罗伯特·胡克为助手开始对气体和燃烧进行研究。
1657年他在罗伯特·胡克的辅助下对奥托·格里克发明的气泵进行改进。1659年制成了“波义耳机器”和“风力发动机”。接下来他用这一装置对气体性质进行了研究,并于1660年发表对这一设备的研究成果。这一论文遭到一些人反对,为了反驳异议,波义耳阐明了在温度一定的条件下气体的压强与体积成反比的这一性质,法国物理学家得到了同样的结果,但是一直到1667年才发表。于是在英语国家,这一定律被称为波义耳定律,而在欧洲大陆则被称为马略特定律。
1661年波义耳发表了《怀疑派的化学家》,在这部着作中波义耳批判了一直存在的四元素说,认为在科学研究中不应该将组成物质的物质都称为元素,而应该采取类似海尔蒙特的观点,认为不能互相转变和不能还原成更简单的东西为元素,他说:“我说的元素...是指某种原始的、简单的、一点也没有掺杂的物体。元素不能用任何其他物体造成,也不能彼此相互造成。元素是直接合成所谓完全混合物的成份,也是完全混合物最终分解成的要素。”而元素的微粒的不同聚合体导致了性质的不同。由于波意耳在实验与理论两方面都对化学发展有重要贡献,他的工作为近代化学奠定了初步基础,故被认为是近代化学的奠基人。
1668年他离开牛津前往伦敦他姐姐的庄园居住。在伦敦他建立了自己的实验室,主要进行化学方面的实验。他努力把严谨的实验方法引入化学。1673 年波义耳和胡克对物质的燃烧进行了研究,发现在真空情况下,物质无法燃烧。波义耳根据燃烧实验的结果,写成了论文《关于火焰与空气关系的新实验》,最先揭示了空气是燃烧的必要条件。但是他仍然认为燃烧是火与物质之间的作用。另外波义耳还发现了某些植物的色素可以在酸性和碱性条件下出现不同的颜色,从而引入指示剂的概念。1680年波义耳被选为英国皇家学会会长,但是由于誓言的问题,他拒绝了这一职务。
晚年生活1689年之后波义耳本来就不是很好的健康继续恶化,他退出了一切社会活动,结束了与皇家学会的关系,公开对不能接待来访者进行道歉。在这种闲居中,他打算整理思想和文章,并希望从事一些秘密地传给后人的化学研究。1691年12月30日,他姐姐去世后仅仅一周,波义耳去世。葬于圣马丁教堂墓地,按照他的遗嘱,他捐赠他写的关于上帝存在讨论的演讲稿,以供后来学者进行讨论。
社会评价罗伯特·波义耳(Robert Boyle,1627年1月25日-1691年12月30日),爱尔兰自然哲学家。虽然他的化学研究仍然带有炼金术色彩,他的《怀疑派的化学家》一书仍然被视作化学史上的里程碑。
化学学科分支?无机化学?有机化学?物理化学?分析化学?理论化学?计算化学?生物化学?热化学?电化学?光化学?药物化学?量子化学?核化学?放射化学?天文化学?大气化学?环境化学?绿色化学?信息化学?地球化学?石油化学?高分子化学?超分子化学基本概念?分子?原子?元素?化学物质?化学命名法?离子?酸碱性?氧化还原?化合物?摩尔?化学键?分子间力?化学反应基本定律?质量守恒定律?能量守恒定律?电荷守恒定律?阿伏伽德罗定律?朗伯比尔定律?波义耳定律?查理定律?菲克定律?盖吕萨克定律?亨利定律?盖斯定律?定组成定律?倍比定律?拉乌尔定律物理定律运动学?质心运动定律?欧拉运动定律守恒律?能量守恒定律?动量守恒定律?角动量守恒定律力学?惯性原理?牛顿运动定律?万有引力定律?开普勒行星运动三定律?欧拉运动定律?胡克定律?帕斯卡定律?阿基米德定律?伯努利定律热力学?阿伏伽德罗定律?理想气体状态方程?玻意耳定律?查理定律?盖-吕萨克定律?道尔顿分压定律?杜隆-珀蒂定律?格锐目定律?亨利定律?热力学基本定律电磁学?库仑定律?电荷守恒定律?楞次定律?法拉第电磁感应定律?毕奥-萨伐尔定律?安培定律?高斯定律?洛伦兹力?麦克斯韦方程?欧姆定律?焦耳定律?基尔霍夫第一定律?基尔霍夫第二定律光学?光的折射定律?光的反射定律?斯涅尔定律量子力学?态叠加原理?薛定谔方程?狄拉克方程?莫塞莱定律相对论?光速不变原理?相对性原理?洛伦兹变换?等效原理?爱因斯坦场方程化学定律?质量守恒定律?能量守恒定律?电荷守恒定律?阿伏伽德罗定律?朗伯比尔定律?波义耳定律?查理定律?菲克定律?盖吕萨克定律?亨利定律?盖斯定律?定比定律?倍比定律?拉乌尔定律波义耳定律
中文名称:理想气体英文名称:ideal gas
定义1:一种具有以下特点的气体:(1)服从马略特和盖-吕萨克定律,因而满足理想气体的状态方程。(2)内能仅是温度的函数。(3)比热容与温度无关。
应用学科:大气科学(一级学科);动力气象学(二级学科)
定义2:严格遵守理想气体状态方程 pVpnRT 的假想气体。
应用学科:电力(一级学科);通论(二级学科)
严格遵从气态方程)的气体,叫做理想气体(Ideal gas.有些书上,指符合气体三大定律的气体。)从微观角度来看是指:分子本身的体积和分子间的作用力都可以忽略不计的气体,称为是理想气体。
定义
忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。这种气体称为理想气体。
概述
气态方程全名为理想气体状态方程,一般指克拉珀龙方程:。其中p为压强,V为体积,n为物质的量,R为普适气体常量,T为绝对温度(T的单位为开尔文(字母为K),数值为摄氏温度加273.15,如即为273.15K)。
当p,V,n,T的单位分别采用Pa(帕斯卡),(立方米),mol,K时,R的数值为8.31。该方程严格意义上来说只适用于理想气体,但近似可用于非极端情况(高温低压)的真实气体(包括常温常压)。
性质
1.分子体积与气体体积相比可以忽略不计;
2.分子之间没有相互吸引力;
3.分子之间及分子与器壁之间发生的碰撞不造成动能损失;
4.在容器中,在未碰撞时考虑为作匀速运动,气体分子碰撞时发生速度交换,无动能损失;
5.理想气体的内能是分子动能之和。