在数学中,什么是向量
在数学中,几何向量(也称为欧几里得向量,通常简称向量、矢量),指具有大小(magnitude)和方向的量。
向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头→。[1] 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。给空间设一直角坐标系,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。
向量共面是什么意思
共面定理的定义为能平移到一个平面上的三个向量称为共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理。
推论1
设OABC是不共面的四点 则对空间任意一点P 都存在唯一的有序实数组(x,y,z)
使得OP=xOA+yOB+zOC {OP,OA,OB,OC均表示向量} 说明:若x+y+z=1 则PABC四点共面 (但PABC四点共面的时候,若O在平面ABP内,则x+y+z不一定等于1,即x+y+z=1 是P.A.B.C四点共面的充分不必要条件)
证明:
1)唯一性:
设另有一组实数x',y',z' 使得OP=x'OA+y'OB+z'OC
则有xOA+yOB+zOC=x'OA+y'OB+z'OC
∴(x-x')OA+(y-y')OB+(z-z')OC=0
∵OA、OB、OC不共面
∴x-x'=y-y'=z-z'=0即x=x'、y=y'、z=z'
故实数x,y,z是唯一的
2)若x+y+z=1 则PABC四点共面:
假设OP=xOA+yOB+zOC且x+y+z=1 且PABC不共面
那么z=1-x-y 则OP=xOA+yOB+OC-xOC-yOC
OP=OC+xCA+yCB(CP=xCA+yCB)
点P位于平面ABC内 与假设中的条件矛盾 故原命题成立
数学中什么是向量?
规定了方向和大小的量称为向量.向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.
在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向
向量的表示向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.
向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.
向量
的大小,也就是向量
的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.
向量的乘积公式是什么??
向量a=(x1,y1),向量b=(x2,y2)a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)向量之间不叫"乘积",而叫数量积,如a·b叫做a与b的数量积或a点乘b扩展资料:1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。