“坐标”的含义是什么?
坐标,数学名词。是指为确定天球上某一点的位置,在天球上建立的球面坐标系。有两个基本要素:1、基本平面。由天球上某一选定的大圆所确定。大圆称为基圈,基圈的两个几何极之一,作为球面坐标系的极。2、主点,又称原点。由天球上某一选定的过坐标系极点的大圆与基圈所产生的交点所确定。笛卡尔坐标系相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。需要指出的是,请将数学中的笛卡尔坐标系与电影《异次元杀阵》中的笛卡尔坐标相区分,电影中的定义与数学中定义有出入,请勿混淆。
什么是坐标
为确定天球上某一点的位置,在天球上建立的球面坐标系。有两个基本要素:①基本平面。由天球上某一选定的大圆所确定。大圆称为基圈,基圈的两个几何极之一,作为球面坐标系的极。②主点,又称原点。由天球上某一选定的过坐标系极点的大圆与基圈所产生的交点所确定。笛卡尔坐标系(Cartesian coordinates)(法语:les coordonnées cartésiennes)就是直角坐标系和斜角坐标系的统称。相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标 是根据数轴上 对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。 相交于原点的两条数轴,构成了平面放射坐标系。[3]如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。需要指出的是,请将数学中的 笛卡尔坐标系与电影《异次元杀阵》中的笛卡尔坐标相区分,电影中的定义与数学中定义有出入,请勿混淆。
坐标是什么意思
为确定某一点的位置而设立的确定指标。分类1、绝对坐标:是以点O为原点,作为参考点,来定位平面内某一点的具体位置,表示方法为:A(X,Y);2、相对坐标:是以该点的上一点为参考点,来定位平面内某一点的具体位置,其表示方法为:A(@△X,△Y);3、相对极坐标:是指出平面内某一点相对于上一点的位移距离、方向及角度,具体表示方法为:A(@d<α)。三大坐标笛卡尔坐标系(Cartesian coordinates)(法语:les coordonnées cartésiennes)就是直角坐标系和斜角坐标系的统称。相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标 是根据数轴上 对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。 相交于原点的两条数轴,构成了平面放射坐标系。 如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。需要指出的是,请将数学中的 笛卡尔坐标系与电影《异次元杀阵》中的笛卡尔坐标相区分,电影中的定义与数学中定义有出入,请勿混淆。2.柱坐标系中的三个坐标变量是r、φ、z。与空间直角坐标系相同,柱坐标系中也有一个z变量。其中r为原点O到点M在平面xoy上的投影M'间的距离,r∈[0,+∞),φ为从正z轴来看自x轴按逆时针方向转到OM'所转过的角,φ∈[0, 2π),z为圆柱高度,z∈R3.球坐标系(Spherical)假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数(r,θ,φ)来确定,其中r为原点O与点P间的距离;θ为有向线段OP与z轴正向的夹角;φ为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M为点P在xOy面上的投影;。这样的三个数r,θ,φ叫做点P的球面坐标,显然,这里r,θ,φ的变化范围为r∈[0,+∞),θ∈[0, π], φ∈[0,2π] 。当r,θ或φ分别为常数时,可以表示如下特殊曲面:r = 常数,即以原点为心的球面;θ= 常数,即以原点为顶点、z轴为轴的圆锥面;φ= 常数,即过z轴的半平面。