正多面体

时间:2024-05-17 15:26:18编辑:优化君

为什么正多面体只有五种?

设正多面体的每个面是正n边行,每个顶点是m条棱,于是,棱数E应是F(面数)与n的积的一半,即
Nf=2E -------------- 1式
同时,E应是V(顶点数)与M的积的一半,即
mV=2E -------------- 2式
由1式、2式,得
F=2E/n, V=2E/m,
代入欧拉公式
V+F-E=2,

2E/m+2E/n-E=2
整理后,得1/m+1/n=1/2+1/E.
由于E是正整数,所以1/E>0。因此
1/m+1/n>1/2 -------------- 3式
3式说明m,n不能同是大于3,否则3式不成立。另一方面,由于m和n的意义(正多面体一个顶点处的棱数与多边形的边数)知,m>=3且n>=3。因此m和n至少有一个等于3
当m=3时,因为1/n>1/2-1/3=1/6,n又是正整数,所以n只能是3,4,5
同理n=3,m也只能是3,4,5

所以
n m 类型
3 3 正四面体
4 3 正六面体
3 4 正八面体
5 3 正十二面体
3 5 正二十面体

由于上述5种多面体确实可以用几何方法作出,而不可能有其他种类的正多面体
所以正多面体只有5种


有几种正多面体?为什么只有这几种呢?

仅有五种正多面体,即是正四面体、正六面体、正八面体、正十二面体和正二十面体。所谓正多面体,当然要首先保证它是一个多面体,而它的特殊之处就在于它的每一个面都是正多边形,而且各个面的正多边形都是全等的。也就是说,将正多面体的各个面剪下来,它们可以完全重合。所以虽然多面体很多,可是正多面体却很少,仅有五个。正四面体是由四个全等的等边三角形组成的;正六面体是由六个全等的正方形组成的;正八面体是由八个全等的等边三角形组成的;正十二面体是由十二个全等的正五边形组成的;正二十面体是由二十个全等的等边三角形组成的。扩展资料:正多面体的相关性质:1、如果两个正多面体是同类型的正多面体,那么这两个正多面体的二面角都相。2、正多面体的外接球、内切球、内棱切球都存在,并且三球球心重合。3、正多面体的外心、内心、内棱心重合的点称为该正多面体的中心。4、正多面体除正四面体外过任顶点和正多面体中心的直线必然经过正多面体的另一顶点,并且这两个顶点到正多面体中心的距离都相等。5、除正四面体外,连线经过正多面体的f11心的两点称为相财顶点,连两双相对顶点的两条棱称为正多面体的对棱,由对棱围成的两个面称为正多面体的对面。6、除正四面体外,正多面体的对棱、对面都平行。参考资料来源:百度百科-正多面体

正多面体与正棱锥是不是同一概念?不是的话有什么区别?

棱柱、棱锥都是一些平面多边形围成的几何体。若干个平面多边形围成的几何体,叫做多面体,围成的多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共点叫做多面体的顶点.

把多面体的任何一个面无限延展,如果所有其他面都在这个延伸面的同一侧,这样的多面体叫做凸多面体.

每个面都是有相同边数的正多边形,且经过每个顶点都有相同数目的棱的凸多面体,叫做正多面体.


柱体,圆柱,棱柱,锥体,棱锥,圆锥分别的定义

一、柱体:一个多面体有两个面互相平行且大小相同,余下的每个相邻两个面的交线互相平行,这样的多面体就为柱;另外,柱体还可分为正柱体,斜柱体。柱体,可分圆柱,棱柱。二、圆柱:圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。三、棱柱:棱柱是几何学中的一种常见的三维多面体,指两个平行的平面被三个或以上的平面所垂直截得的封闭几何体。若用于截平行平面的平面数为n,那么该棱柱便称为n-棱柱。如三棱柱就是由两个平行的平面被三个平面所垂直截得的封闭几何体。四、椎体:椎体是指包括圆锥、棱锥等在内的空间立体图形,由圆的或其它封闭平面基底以及由此基底边界上各点连向一公共顶点的线段所形成的面所限定。五、棱锥:在几何学上,棱锥又称角锥,是三维多面体的一种,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的称呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。六、圆锥:圆锥是一种几何图形,有两种定义。1、解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。2、立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)。扩展资料:柱体,圆柱,棱柱,锥体,棱锥,圆锥是立体几何中的常见图形。数学上,立体几何(Solid geometry)是3维欧氏空间的几何的传统名称—- 因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥, 锥台, 球,棱柱, 楔, 瓶盖等等。 毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。参考资料来源:百度百科-柱体百度百科-圆柱百度百科-棱柱百度百科-椎体百度百科-棱锥百度百科-圆锥

上一篇:颤栗的意思

下一篇:lorraine