拓扑

时间:2024-05-22 14:07:51编辑:优化君

拓扑是什么意思啊?

你所提问的“拓扑”的概念应是指数学里的拓扑(学)。拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。著名的“四色问题”就是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。这是具有划时代意义的事件。现在拓扑学在泛函分析、李群论、微分几何、微分方程等许多数学分支中都有广泛的应用。有人把拓扑说成“莫比乌斯带”,还什么“理解成网络好了”,那是概念狭隘化。这种说法是不妥的,就像我们不能把“鸡”理解成是肯德基饭店里那炸得金黄的鸡快一样。那是偷换概念。


“拓扑”是什么意思?

拓扑(topology)原意地志学,1847年首次由Gauss的学生Listing引进。数学家称拓扑学为位置分析(analysis situs),拓扑学是近代发展起来的高度抽象的一门几何学。根据德国数学家Erlangen纲领的思想,各种几何学可按照变换群进行分类,即几何学是研究空间在某种变换下的不变性质。例如,欧氏几何是研究刚体运动下的不变性质。仿射几何是研究仿射变换下的不变性质。

拓扑学是研究空间在拓扑变换(同胚)下的不变性质。同胚的空间X和Y是指X和Y之间存在双向连续(互逆且连续)的对应。形象比喻就是橡皮X在不允许隔断的情况下可以捏成Y。俗称橡皮几何学。

包括:Euler-Poincare示性数,五色地图着色问题,Jordan曲线定理,Riemann关于闭曲面间的拓扑分类。

其成为学科应归功于Poincare,他在研究代数簇的基础上,通过将空间剖分成若干个单形的组合,得出空间的Betti数、挠系数的计算方法(同调群),还得出Euler定理的一般形式和基本群,流形对偶定理等。在1894~1912年这些成果,标志着拓扑学的创立。

1910-1920,Hausdorff,Alexander为代表产生点集拓扑这一分支。1930年引入群的思想,组合拓扑变成现在的代数拓扑,1940年以Whitney对微分流形的研究为代表,发展了微分拓扑。现在拓扑学已经成为近代纯粹数学的重要支柱,它的方法和结果已渗透到分析、代数、几何、计算,甚至于物理学等各领域。


上一篇:直尺

下一篇:街道