初一上册数学

时间:2024-05-29 07:39:06编辑:优化君

初一数学上册知识点大全

初一数学上册知识点大全有哪些你知道吗?初一数学上册的学习,需要大家对知识点进行 总结 ,这样大家最大效率地提高自己的学习成绩,下面是我整理的初一数学上册知识点,欢迎大家查阅! 七年级数学 知识点 生活中的轴对称 1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。 3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。 联系:它们都是图形沿某直线折叠可以相互重合。 2、成轴对称的两个图形一定全等。 3、全等的两个图形不一定成轴对称。 4、对称轴是直线。 5、角平分线的性质 1、角平分线所在的直线是该角的对称轴。 2、性质:角平分线上的点到这个角的两边的距离相等。 6、线段的垂直平分线 1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。 2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。 7、轴对称图形有: 等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。 8、等腰三角形性质: ①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。 9、①“等角对等边”∵∠B=∠C∴AB=AC ②“等边对等角”∵AB=AC∴∠B=∠C 10、角平分线性质: 角平分线上的点到角两边的距离相等。 ∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF 11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。 ∵OC垂直平分AB∴AC=BC 12、轴对称的性质 1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。 2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。 3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。 13、镜面对称 1.当物体正对镜面摆放时,镜面会改变它的左右方向; 2.当垂直于镜面摆放时,镜面会改变它的上下方向; 3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样; 学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法: (1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质; (3)可以把数字左右颠倒,或做简单的轴对称图形; (4)可以看像的背面;(5)根据前面的结论在头脑中想象。 初一数学解题技巧 一、答题原则 大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。如果发现问题,要及时 报告 监考老师处理。 答题时,一般遵循如下原则: 1.从前向后,先易后难。通常试题的难易分布是按每一类题型从前向后,由易到难。因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。当然,有时但也不能机械地按部就班。中间有难题出现时,可先跳过去,到最后攻它或放弃它。先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先选择、填空题,后解答题。 2.规范答题,分分计较。数学分I、II卷,第I卷客观性试题,用计算机阅读,一要严格按规定涂卡,二要认真选择答案。第II卷为主观性试题,一般情况下,除填空题外,大多解答题一题设若干小题,通常独立给分。解答时要分步骤(层次)解答,争取步步得分。解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。 3.得分优先、随机应变。在答题时掌握的基本原则是“熟题细做,生题慢做”,保证能得分的地方绝不丢分,不易得分的地方争取得分,但是要防止被难题耗时过多而影响总分。 4.填充实地,不留空白。考试阅卷是连续性的流水作业,如果你在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为你确实不行。另外每道题都有若干采分点,触到采分点便可给分,未能触到采分点也没有倒扣分的规定。因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。 5.观点正确,理性答卷。不能因为答题过于求新,结果造成观点错误,逻辑不严密;或在试卷上即兴发挥,涂写与试卷内容无关的字画,可能会给自己带来意想不到的损失。胡乱涂写可以认为是在试卷上做记号,而判作弊。因此,要理性答卷。 6.字迹清晰,合理规划。这对任何一科考试都很重要,尤其是对“精确度”较高的数理化,若字迹不清无法辨认极易造成阅卷老师的误判,如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。 另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到 “前紧后松”而不是“前松后紧”。特别注意只能在规定位置答题,转页答题不予计分。 二、审题要点 审题包括浏览全卷和细读试题两个方面。 一是开考前浏览。开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。这是我的机会。”时刻提醒自己:我易人易,我不大意;我难人难,我不畏难。 二是答题过程中的仔细审题。这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题 方法 和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。 1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。 2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、方法和此类问题的易错点等。 3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。 三、时间分配 近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。在心目 中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。有效地利用最好的答题时间段,通常各时间段内的答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。特别是那些还没有答完试卷的考生会分心、产生急躁心理,这个时间段效率要低于 其它 时间段。 在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。通常一般水平的考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。当然这个时间安排还要因人而异。 在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;但若已接近成功,延长一点时间也是必要的。需要说明的是,分配时间应服从于考试成功的目的,灵活掌握时间而不墨守最初安排。时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。更不要因为时间安排过紧,造成太大的心理压力,而影响正常答卷。 一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。 五、大题和难题 一张考卷必不可少地要有大题、难题以区分考生的知识和能力水平,以便拉开档次。一般大题、难题分值都较高,遇到难题,要尽量放到最后去攻克;如果别的题目全部做完而且检查无误,而又有一定时间的话,就应想办法攻克难题。不是每个人都能得150的,先把会的做完,也可以给自己奠定心里优势。 六、各种题型的解答技巧 1.选择题的答题技巧 (1)掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择支提供的信息,决不能把所有的选择题都当作解答题来做。首先,看清试题的指导语,确认题型和要求。二是审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。三是辨析选项,排误选正。四是要正确标记和仔细核查。 (2)特值法。在选择支中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。 (3)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。 (4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以为你创造更多的得分机会。除须计算的题目外,一般不猜A。 2.填空题答题技巧 (1)要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。 (2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。 3.解答题答题技巧 (1)仔细审题。注意题目中的关键词,准确理解考题要求。 (2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。 (3)给出结论。注意分类讨论的问题,最后要归纳结论。 (4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。 七、如何检查 在考试中,主动安排时间检查答卷是保证考试成功的一个重要环节,它是防漏补遗、去伪存真的过程,尤其是考生如果采用灵活的答题顺序,更应该与最后检查结合起来。因为在你跳跃式往返答题过程中很可能遗漏题目,通过检查可弥补这种答题策略的漏洞。 检查过程的第一步是看有无遗漏或没有做的题目,发现之后,应迅速完成或再次思考解法。对各类题型的做答过程和结果,如果有时间要结合草稿纸的解题过程全面复查一遍,时间不够,则重点检查。 选择题的检查主要是查看有无遗漏,并复查你心存疑虑的题目。但是若没有充分的理由,一般不要改变你依据第一感觉作出的判断。 对解答题的检查,要注意结合审查草稿纸的演算过程,改正计算和推理中的错误。另外要补充遗漏的理由和步骤,删去或修改错误或不准确的观点。 计算题和证明题是检查的重点,要仔细检查是否完成了题目的全部要求;若时间仓促,来不及验算的话,有一些简单的验证方法:一是查单位是否有误;二是看计算公式引用有无错误;三是看结果是否比较“像”,这里所说的“像”是依靠 经验 判断,如应用题的答案是否符合实际意义;数字结论是否为整数、自然数或有规则的表达式,若结论为小数或无规则的数,则要重新演算,最好能用其他方法再试着去做 八、强调的一点是草稿纸,这是考试时和试卷同等重要的东西。 同学们拿到草稿纸后,请先将它三折。然后按顺序使用。草稿纸上每道题之间留空,标清题号。字迹要做到能够准确辨认,切不可胡写乱画。这样做的好处是: 1. 草稿纸展现的是你的答题思路。草稿纸清晰,答题思路也会清晰,最起码你清楚你已经做到了哪一步。如果草稿混乱的话,这一步推出来了,往往又忘了上一步是怎么得到的。 2. 对于前面提到的暂时不会,回头再做的题,由于你第一次做本题时已经进行了一定的思维过程。第二次做时如果重头再思考非常浪费时间。利用草稿纸,可以迅速找到上次的思维断点。从而继续攻破。关键结论要特殊标记。 3. 检查过程中,草稿纸更是最好的帮手。如果连演算过程都可从草稿纸上清晰找到的话,无疑会节省大量时间。 初一数学基本知识点归纳 第一章有理数 1、大于0的数是正数。 2、有理数分类:正有理数、0、负有理数。 3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数) 4、规定了原点,单位长度,正方向的直线称为数轴。 5、数的大小比较: ①正数大于0,0大于负数,正数大于负数。 ②两个负数比较,绝对值大的反而小。 6、只有符号不同的两个数称互为相反数。 7、若a+b=0,则a,b互为相反数 8、表示数a的点到原点的距离称为数a的绝对值 9、绝对值的三句:正数的绝对值是它本身, 负数的绝对值是它的相反数, 0的绝对值是0。 10、有理数的计算:先算符号、再算数值。 11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О) 12、乘除:同号得正,异号的负 13、乘方:表示n个相同因数的乘积。 14、负数的奇次幂是负数,负数的偶次幂是正数。 15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。 16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数) 17、左边第一个非零的数字起,所有的数字都是有效数字。 【知识梳理】 1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。 2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。 3.倒数:若两个数的积等于1,则这两个数互为倒数。 4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0; 几何意义:一个数的`绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。 6.实数大小的比较:利用法则比较大小;利用数轴比较大小。 7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。 初一数学基本知识点总结 一元一次方程知识点 知识点1:等式的概念:用等号表示相等关系的式子叫做等式. 知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可. 说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数. 知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据. 例2:如果(a+1) +45=0是一元一次方程,则a________,b________. 分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1. 知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m. (2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式. 即若a=b,则am=bm.或. 此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c. 说明:等式的性质是解方程的重要依据. 例3:下列变形正确的是( ) A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1 C.如果x=y,则x-5=5-y D.如果则 分析:利用等式的性质解题.应选D. 说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视. 知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程. 知识点6:关于移项:⑴移项实质是等式的基本性质1的运用. ⑵移项时,一定记住要改变所移项的符号. 知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用. 例4:解方程 . 分析:灵活运用一元一次方程的步骤解答本题. 解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=. 说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项. 知识点8:方程的检验 检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等. 注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边. 三、一元一次方程的应用 一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的一个棘手问题.下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助. 一、行程问题 行程问题的基本关系:路程=速度×时间, 速度=,时间=. 1.相遇问题:速度和×相遇时间=路程和 例1甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇? 解:设甲、乙二人t分钟后能相遇,则 (200+300)× t =1000, t=2. 答:甲、乙二人2钟后能相遇. 2.追赶问题:速度差×追赶时间=追赶距离 例2甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲? 解:设t分钟后,乙能追上甲,则 (300-200)t=1000, t=10. 答:10分钟后乙能追上甲. 3. 航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度. 例3甲乘小船从A地顺流到B地用了3小时,已知A、B两地相距90千米.水流速度是20千米/小时,求小船在静水中的速度. 解:设小船在静水中的速度为v,则有 (v+20)×3=90, v=10(千米/小时). 答:小船在静水中的速度是10千米/小时. 二、工程问题 工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1. 例4已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成? 解:设甲再单独做x天才能完成,有 (+)×5+=1, x=11. 答:乙再单独做11天才能完成. 三、环行问题 环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长. 例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇? 解:设经过t分钟二人相遇,则 (300-200)t=400, t=4. 答:经过4分钟二人相遇. 四、数字问题 数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同. 例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数. 解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得 [10(x-1)+x]+[10x+(x+1)]=33, x=1,则x+1=2. ∴这个数是21. 答:这个两位数是21. 五、利润问题 利润问题的基本关系:①获利=售价-进价②打几折就是原价的十分之几 例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元? 解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] , x=162. 48+x=48+162=210. 答:该电器每台进价、定价各分别是162元、210元. 六、浓度问题 浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度 例8用“84”消毒液配制药液对白色衣物进行消毒,要求按1∶200的比例进行稀释.现要配制此种药液4020克,则需要“84”消毒液多少克? 解:设需要“84”消毒液x克,根据题意得 =, x=20. 答:需要“84”消毒液20克. 七、等积变形问题 例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π) 第9 / 11页 分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为: 玻璃杯里倒掉的水的体积=长方体铁盒的容积. 解:设玻璃杯中水的高度下降了xmm,根据题意,得 经检验,它符合题意. 八、利息问题 例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%. (1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可得到利息________元.扣除利息税后实得________元. (2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元? (3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少? 分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息-利息税. 解:(1)利息=本金×利率×期数=8500×2.2%×1=187元. 实得利息 =利息×(1-20%)=187×0.8=149.6元. (2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232. 解方程,得x=70000. 经检验,符合题意. 答:这笔资金为70000元. (3)设这笔资金为x元,依题意,得x×3×3%×(1-20%)=432. 解方程,得x=6000. 经检验,符合题意. 答:这笔资金为6000元. 初一数学上册知识点大全相关 文章 : ★ 初一数学上册知识点归纳 ★ 初一数学上册知识点总结 ★ 初一上册数学知识点归纳整理 ★ 初一数学知识点小归纳 ★ 初一数学上册基本概念汇总与学习方法 ★ 初一上册数学知识点手抄报 ★ 初一年级上册数学的21个热门知识点 ★ 七年级数学知识点整理大全 ★ 初一数学上册重点知识整理 ★ 七年级数学上册知识归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();


初一数学上册知识点

初一数学上册知识点   初一是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合。以下是我整理的关于初一数学上册知识点,希望大家认真阅读!   1.1 正数与负数   在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。   与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。   1.2 有理数   正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。   整数和分数统称有理数(rational number)。   通常用一条直线上的点表示数,这条直线叫数轴(number axis)。   数轴三要素:原点、正方向、单位长度。   在直线上任取一个点表示数0,这个点叫做原点(origin)。   只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)   数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。   一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。   1.3 有理数的加减法   有理数加法法则:   1.同号两数相加,取相同的符号,并把绝对值相加。   2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。   3.一个数同0相加,仍得这个数。   有理数减法法则:减去一个数,等于加这个数的相反数。   1.4 有理数的乘除法   有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。   乘积是1的两个数互为倒数。   有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。   两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì   求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。   负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。   把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。   从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。   第二章 一元一次方程   2.1 从算式到方程   方程是含有未知数的等式。   方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。   解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。   等式的.性质:   1.等式两边加(或减)同一个数(或式子),结果仍相等。   2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。   2.2 从古老的代数书说起——一元一次方程的讨论(1)   把等式一边的某项变号后移到另一边,叫做移项。   第三章 图形认识初步   3.1 多姿多彩的图形   几何体也简称体(solid)。包围着体的是面(surface)。   3.2 直线、射线、线段   线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。   连接两点间的线段的长度,叫做这两点的距离。   3.3 角的度量   1度=60分 1分=60秒 1周角=360度 1平角=180度   3.4 角的比较与运算   如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。   如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。   等角(同角)的补角相等。   等角(同角)的余角相等。 ;


初一数学知识点上册

  初一是学生数学知识奠定基础的时期,那么初一上册数学知识点有哪些呢?下面是由我为大家整理的“初一数学知识点上册”,仅供参考,欢迎大家阅读。   初一数学知识点上册   第一章 有理数   1.1 正数与负数   在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。   与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。   1.2 有理数   正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。   整数和分数统称有理数(rational number)。   通常用一条直线上的点表示数,这条直线叫数轴(number axis)。   数轴三要素:原点、正方向、单位长度。   在直线上任取一个点表示数0,这个点叫做原点(origin)。   只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)   数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。   一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。   1.3 有理数的加减法   有理数加法法则:   1.同号两数相加,取相同的符号,并把绝对值相加。   2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。   3.一个数同0相加,仍得这个数。   有理数减法法则:减去一个数,等于加这个数的`相反数。   1.4 有理数的乘除法   有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。   乘积是1的两个数互为倒数。   有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。   两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì   求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。   负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。   把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。   从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。   第二章 一元一次方程   2.1 从算式到方程   方程是含有未知数的等式。   方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。   解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。   等式的性质:   1.等式两边加(或减)同一个数(或式子),结果仍相等。   2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。   2.2 从古老的代数书说起——一元一次方程的讨论(1)   把等式一边的某项变号后移到另一边,叫做移项。   第三章 图形认识初步   3.1 多姿多彩的图形   几何体也简称体(solid)。包围着体的是面(surface)。   3.2 直线、射线、线段   线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。   连接两点间的线段的长度,叫做这两点的距离。   3.3 角的度量   1度=60分 1分=60秒 1周角=360度 1平角=180度   3.4 角的比较与运算   如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。   如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。   等角(同角)的补角相等。   等角(同角)的余角相等。   拓展阅读:初一数学知识点下册   第五章 相交线与平行线   5.1 相交线   对顶角(vertical angles)相等。   过一点有且只有一条直线与已知直线垂直(perpendicular)。   连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。   5.2 平行线   经过直线外一点,有且只有一条直线与这条直线平行(parallel)。   如果两条直线都与第三条直线平行,那么这两条直线也互相平行。   直线平行的条件:   两条直线被第三条直线所截,如果同位角相等,那么两直线平行。   两条直线被第三条直线所截,如果内错角相等,那么两直线平行。   两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。   5.3 平行线的性质   两条平行线被第三条直线所截,同位角相等。   两条平行线被第三条直线所截,内错角相等。   两条平行线被第三条直线所截,同旁内角互补。   判断一件事情的语句,叫做命题(proposition)。   第六章 平面直角坐标系   6.1 平面直角坐标系   含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。   第七章 三角形   7.1 与三角形有关的线段   三角形(triangle)具有稳定性。   7.2 与三角形有关的角   三角形的内角和等于180度。   三角形的一个外角等于与它不相邻的两个内角的和。   三角形的一个外角大于与它不相邻的任何一个内角   7.3 多边形及其内角和   n边形内角和等于:(n-2)?180度   多边形(polygon)的外角和等于360度。   第八章 二元一次方程组   8.1 二元一次方程组   方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。   把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。   使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。   二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。   8.2 消元   将未知数的个数由多化少、逐一解决的想法,叫做消元思想。   第九章 不等式与不等式组   9.1 不等式   用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。   使不等式成立的未知数的值叫做不等式的解。   能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。   含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。   不等式的性质:   不等式两边加(或减)同一个数(或式子),不等号的方向不变。   不等式两边乘(或除以)同一个正数,不等号的方向不变。   不等式两边乘(或除以)同一个负数,不等号的方向改变。   三角形中任意两边之差小于第三边。   三角形中任意两边之和大于第三边。   9.3 一元一次不等式组   把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。   第十章 实数   10.1 平方根   如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。   a的算术平方根读作“根号a”,a叫做被开方数(radicand)。   0的算术平方根是0。   如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。   求一个数a的平方根的运算,叫做开平方(extraction of square root)。   10.2 立方根   如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。   求一个数的立方根的运算,叫做开立方(extraction of cube root)。   10.3 实数   无限不循环小数又叫做无理数(irrational number)。   有理数和无理数统称实数(real number)。

七年级下册数学知识点归纳

第五章 平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。2、对顶角相等3、判断两直线平行的条件:1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。4、平行线的特征:(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。⑵命题的组成每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。第六章 平面直角坐标系1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。3、特殊位置的点的坐标的特点:(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。4.点到轴及原点的距离点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;在平面直角坐标系中对称点的特点:1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。各象限内和坐标轴上的点和坐标的规律:第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-) x轴上的点纵坐标为0,y轴横坐标为0。第七章 三角形1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。2、三角形三个内角的和等于180度。3、直角三角形的两个锐角互余4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。5、直角三角形全等的条件:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。(只要有任意两条边相等,这两个直角三角形就全等)。6、三角形全等的条件:(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。27、等腰三角形的特征:(1) 有两条边相等的三角形叫做等腰三角形;(2) 等腰三角形是轴对称图形;(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。(4)等腰三角形的两个底角相等。(5)等腰三角形的底角只能是锐角


七年级上册数学知识点归纳

七年级(上)数学知识点归纳与总结
一、 知识梳理
知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、 -0.03%这样数叫做负数.它们都是比0小的数.0既不是正数也不是负数.我们可以用正数与负数表示具有相反意义的量.
知识点2:有理数的概念和分类:整数和分数统称有理数.有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数.
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴.

知识点4:绝对值的概念:
(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数.0的相反数是0.
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数.
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大.
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小.
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变.

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数.
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算.
知识点11: 乘法与除法
1.乘法法则
2.除法法则
3.多个非零的数相乘除最后结果符号如何确定
知识点12:倒数
1. 倒数概念
2. 如何求一个数的倒数?(注意与相反数的区别)
知识点13:乘方
1. 乘方的概念,乘方的结果叫什么?
2. 认识底数,指数
3. 正数的任何次幂是_________,零的任何次幂________
负数的偶次幂是_________奇次幂是________
知识点14:混合计算
注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.
知识点15:科学记数法
科学记数法的概念? 注意a的范围


七年级上册数学知识点总结梳理

七年级上册的数学知识点很多,以下是我总结梳理的七年级上册数学知识点,一起看一下具体内容,供参考。 平行线 1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.判定两条直线平行的方法: (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。 (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。 (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 整式 1.整式:是单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。 ①单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。 ②多项式:由若干个单项式相加组成的代数式叫做多项式。 ③系数:单项式中所有字母的指数的和叫做它的次数。 ④次数:一个单项式中,所有变数字母的指数之和,叫做这个单项式的次数。 ⑤项:组成多项式的每个单项式叫做多项式的项。 ⑥多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。 ⑦同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。 ⑧合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 2.整式加减 整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。 有理数 1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 2.数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。 3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。 4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 5.有理数的加减法 同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 6.有理数的乘法 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积为0.例:0×1=0 7.有理数的除法 除以一个不为0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除 以任何一个不为0的数,都得0。 8.有理数的乘方 求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。 相反数和绝对值 1.相反数:只有符号不同的两个数互为相反数,0的相反数是0。在数轴上位于原点两侧且离原点距离相等。 2.绝对值的几何意义:一个数所对应的点离原点的距离叫做该数的绝对值。 3.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。 4.比较两个数的大小关系 在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数。由此可知:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。

初一数学上册知识点总结

= 总结 所学内容,进行学法的理性 反思 ,强化并进行迁移运用,在训练中掌握学法。下面给大家带来一些关于初一数学上册知识点总结,希望对大家有所帮助。 初一数学上册知识点1 正负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 (二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (四)有理数的加减法 1.先定符号,再算绝对值。 2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。 3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。 4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。 (五)有理数乘法(先定积的符号,再定积的大小) 1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。 2.乘积是1的两个数互为倒数。 3.乘法交换律:ab=ba 4.乘法结合律:(ab)c=a(bc) 5.乘法分配律:a(b+c)=ab+ac (六)有理数除法 1.先将除法化成乘法,然后定符号,最后求结果。 2.除以一个不等于0的数,等于乘这个数的倒数。 3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。 4.同底数幂相除,底不变,指数相减。 (八)有理数的加减乘除混合运算法则 1.先乘方,再乘除,最后加减。 2.同级运算,从左到右进行。 3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。 (九)科学记数法、近似数、有效数字。 初一数学上册知识点2 1.有理数: (1)凡能写成 形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数; (2)有理数的分类: ① ② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数; a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 ? a+b=0 ? a、b互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值: (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: 或 ; (3) ; ; (4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小: (1)正数永远比0大,负数永远比0小; (2)正数大于一切负数; (3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大; (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数. 等于本身的数汇总: 相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和0 平方等于本身的数:0,1 立方等于本身的数:0,1,-1. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .(简便运算) 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, . 13.有理数乘方的法则:(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义:(1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0; (4)据规律 底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。 18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种 方法 ,但不能用于证明.常用于填空,选择。 初一数学上册知识点3 实数: —有理数与无理数统称为实数。 有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。 自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。 相反数: 符号不同的两个数互为相反数。 倒数: 乘积是1的两个数互为倒数。 绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。 数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 ⑵减法法则:减去一个数,等于加上这个数的相反数。 ⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。 ⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。 角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。 数学第一章相交线 一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。 二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。 初一数学上册知识点4 多项式除以单项式 一、单项式 1、都是数字与字母的乘积的代数式叫做单项式。 2、单项式的数字因数叫做单项式的系数。 3、单项式中所有字母的指数和叫做单项式的次数。 4、单独一个数或一个字母也是单项式。 5、只含有字母因式的单项式的系数是1或―1。 6、单独的一个数字是单项式,它的系数是它本身。 7、单独的一个非零常数的次数是0。 8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。 9、单项式的系数包括它前面的符号。 10、单项式的系数是带分数时,应化成假分数。 11、单项式的系数是1或―1时,通常省略数字“1”。 12、单项式的次数仅与字母有关,与单项式的系数无关。 二、多项式 1、几个单项式的和叫做多项式。 2、多项式中的每一个单项式叫做多项式的项。 3、多项式中不含字母的项叫做常数项。 4、一个多项式有几项,就叫做几项式。 5、多项式的每一项都包括项前面的符号。 6、多项式没有系数的概念,但有次数的概念。 7、多项式中次数的项的次数,叫做这个多项式的次数。 三、整式 1、单项式和多项式统称为整式。 2、单项式或多项式都是整式。 3、整式不一定是单项式。 4、整式不一定是多项式。 5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。 四、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。 3、几个整式相加减的一般步骤: (1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法 1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n=am﹒an。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。 六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。 3、此法则也可以逆用,即:amn=(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。 3、此法则也可以逆用,即:anbn=(ab)n。 八、三种“幂的运算法则”异同点 1、共同点: (1)法则中的底数不变,只对指数做运算。 (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。 (3)对于含有3个或3个以上的运算,法则仍然成立。 2、不同点: (1)同底数幂相乘是指数相加。 (2)幂的乘方是指数相乘。 (3)积的乘方是每个因式分别乘方,再将结果相乘。 九、同底数幂的除法 1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。 2、此法则也可以逆用,即:am-n=am÷an(a≠0)。 十、零指数幂 1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。 十一、负指数幂 1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即: 注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。 十二、整式的乘法 (一)单项式与单项式相乘 1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。 2、系数相乘时,注意符号。 3、相同字母的幂相乘时,底数不变,指数相加。 4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。 5、单项式乘以单项式的结果仍是单项式。 6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。 (二)单项式与多项式相乘 1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。 2、运算时注意积的符号,多项式的每一项都包括它前面的符号。 3、积是一个多项式,其项数与多项式的项数相同。 4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。 (三)多项式与多项式相乘 1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。 2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。 3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。 4、运算结果中有同类项的要合并同类项。 5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。 十三、平方差公式 1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。 2、平方差公式中的a、b可以是单项式,也可以是多项式。 3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。 4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成 (a+b)?(a-b)的形式,然后看a2与b2是否容易计算。 初一数学上册知识点总结相关 文章 : ★ 初一数学上册知识点归纳 ★ 初一上册数学知识点归纳整理 ★ 初一数学上册重点知识整理 ★ 七年级上册数学知识点总结三篇 ★ 七年级上册数学月考知识点整理 ★ 七年级英语上册各单元知识点汇总 ★ 初一年级上册数学的21个热门知识点 ★ 初一上册数学知识点手抄报 ★ 初一上册数学合并同类项教案 ★ 初中七年级上册数学《整式》教案优质范文五篇

初一数学上册知识点总结

  初一数学上册知识点总结1   代数初步知识   1. 代数式:用运算符号+ - 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.   2.列代数式的几个注意事项:   (1)数与字母相乘,或字母与字母相乘通常使用 乘,或省略不写;   (2)数与数相乘,仍应使用乘,不用 乘,也不能省略乘号;   (3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;   (4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;   (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成 的形式;   (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .   3.几个重要的代数式:(m、n表示整数)   (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;   (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;   (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;   (4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .   初一数学上册知识点总结2   一、方程的有关概念   1.方程:含有未知数的等式就叫做方程.   2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.   3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.   注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.   二、等式的性质   等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.   等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c   等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb   三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.   四、去括号法则   1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.   2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.   五、解方程的一般步骤   1. 去分母(方程两边同乘各分母的最小公倍数)   2. 去括号(按去括号法则和分配律)   3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)   4. 合并(把方程化成ax = b (a≠0)形式)   5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).   六、用方程思想解决实际问题的一般步骤   1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.   2. 设:设未知数(可分直接设法,间接设法)   3. 列:根据题意列方程.   4. 解:解出所列方程.   5. 检:检验所求的解是否符合题意.   6. 答:写出答案(有单位要注明答案)   初一数学上册知识点总结3   (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;   (2)有理数的分类: ① 整数 ②分数   (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;   (4)自然数 0和正整数;a0 a是正数;a0 a是负数;   a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.   有理数比大小:   (1)正数的绝对值越大,这个数越大;   (2)正数永远比0大,负数永远比0小;   (3)正数大于一切负数;   (4)两个负数比大小,绝对值大的反而小;   (5)数轴上的两个数,右边的数总比左边的数大;   (6)大数-小数 0,小数-大数 0.   初一数学上册知识点总结4   第一章:丰富的图形世界   1、几何图形   从实物中抽象出来的各种图形,包括立体图形和平面图形。   2、点、线、面、体   ①几何图形的组成   点:线和线相交的地方是点,它是几何图形中最基本的图形。   线:面和面相交的地方是线,分为直线和曲线。   面:包围着体的是面,分为平面和曲面。   体:几何体也简称体。   ②点动成线,线动成面,面动成体。   3、生活中的立体图形   生活中的立体图形(按名称分)   柱:   ①圆柱   ②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……   锥:   ①圆锥   ②棱锥   球   4、棱柱及其有关概念:   棱:在棱柱中,任何相邻两个面的交线,都叫做棱。   侧棱:相邻两个侧面的交线叫做侧棱。   n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。   5、正方体的平面展开图:   11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)   6、截一个正方体:   用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。   7、三视图:   物体的三视图指主视图、俯视图、左视图。   主视图:从正面看到的图,叫做主视图。   左视图:从左面看到的图,叫做左视图。   俯视图:从上面看到的图,叫做俯视图。   第二章:有理数及其运算   1、有理数的分类   ①正有理数   有理数{ ②零   ③负有理数   有理数{ ①整数   ②分数   2、相反数:   只有符号不同的两个数叫做互为相反数,零的`相反数是零   3、数轴:   规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。   4、倒数:   如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。   5、绝对值:   在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。   若|a|=a,则a≥0;   若|a|=-a,则a≤0。   正数的绝对值是它本身;   负数的绝对值是它的相反数;   0的绝对值是0。   互为相反数的两个数的绝对值相等。   6、有理数比较大小:   正数大于0,负数小于0,正数大于负数;   数轴上的两个点所表示的数,右边的总比左边的大;   两个负数,绝对值大的反而小。   7、有理数的运算:   ①五种运算:加、减、乘、除、乘方   多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。   有理数加法法则:   同号两数相加,取相同的符号,并把绝对值相加。   异号两数相加,绝对值值相等时和为0;   绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。   一个数同0相加,仍得这个数。   互为相反数的两个数相加和为0。   有理数减法法则:   减去一个数,等于加上这个数的相反数!   有理数乘法法则:   两数相乘,同号得正,异号得负,并把绝对值相乘。   任何数与0相乘,积仍为0。   有理数除法法则:   两个有理数相除,同号得正,异号得负,并把绝对值相除。   0除以任何非0的数都得0。   注意:0不能作除数。   有理数的乘方:求n个相同因数a的积的运算叫做乘方。   正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。   ②有理数的运算顺序   先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。   ③运算律(5种)   加法交换律   加法结合律   乘法交换律   乘法结合律   乘法对加法的分配律   8、科学记数法   一般地,一个大于10的数可以表示成a×   10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)   第三章:整式及其加减   1、代数式   用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。   注意:   ①代数式中除了含有数、字母和运算符号外,还可以有括号;   ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;   ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。   代数式的书写格式:   ①代数式中出现乘号,通常省略不写,如vt;   ②数字与字母相乘时,数字应写在字母前面,如4a;   ③带分数与字母相乘时,应先把带分数化成假分数。   ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;   ⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。   ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。   2、整式:单项式和多项式统称为整式。   ①单项式:   都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。   注意:   单独的一个数或一个字母也是单项式;   单独一个非零数的次数是0;   当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。   ②多项式:   几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。   ③同类项:   所含字母相同,并且相同字母的指数也相同的项叫做同类项。   注意:   ①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。   ②同类项与系数无关,与字母的排列顺序无关;   ③几个常数项也是同类项。   4、合并同类项法则:   把同类项的系数相加,字母和字母的指数不变。   5、去括号法则   ①根据去括号法则去括号:   括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。   ②根据分配律去括号:   括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。   6、添括号法则   添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。   7、整式的运算:   整式的加减法:(1)去括号;(2)合并同类项。   第四章基本平面图形   1、线段、射线、直线   名称   表示方法   端点   长度   直线   直线AB(或BA)   直线l   无端点   无法度量   射线   射线OM   1个   无法度量   线段   线段AB(或BA)   线段l   2个   可度量长度   2、直线的性质   ①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)   ②过一点的直线有无数条。   ③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。   3、线段的性质   ①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)   ②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。   ③线段的大小关系和它们的长度的大小关系是一致的。   4、线段的中点:   点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。   5、角:   有公共端点的两条射线组成的图形叫做角,两条射线

上一篇:国务院机关党组书记

下一篇:藏獒天龙