分集增益

时间:2024-07-05 22:55:51编辑:优化君

分集增益的详细介绍

无线信号在复杂的无线信道中传播产生Rayleigh衰落,在不同空间位置上其衰落特性不同。如果两个位置间距大于天线之间的相关距(通常相隔十个信号波长以上),就认为两处的信号完全不相关。这样就可以实现信号空间分集接收。传统上通过分集提供独立的衰落信道在接收机接收多个发射信号的副本。从中提取发射信号。当不同的信息比特经过独立的衰落,所有的副本同时深衰落的概率非常的小,这样,接收机可以从衰落较轻的接收信号提取发送的比特。在MIMO通信中,空时编码(STC)将数据分成多个数据子流在多个天线上同时发射,建立了空间分离和时间分离之间的关系,通过在发射天线间的时域引入编码冗余得到分集增益。其本质在于建立了空间分离和时间分离之间的关系,达到各个天线之间的相互保护的目的(也就是说各个天线发送的信号独立或者相关性很小),降低了同一个符号在所有天线上发生深度衰落的机会,降低平均误码率。

分集增益的介绍

分集技术是研究如何充分利用传输中的多径信号能量,以改善传输的可靠性,它也是一项研究利用信号的基本参量在时域、频域与空域中,如何分散开又如何收集起来的技术。“分”与“集”是一对矛盾,在接收端取得若干条相互独立的支路信号以后,可以通过合并技术来得到分集增益。从合并所处的位置来看,合并可以在检测器以前,即在中频和射频上进行合并,且多半是在中频上合并;合并也可以在检测器以后,即在基带上进行合并。合并时采用的准则与方式主要分为四种:最大比值合并(MRC:Maximal Ratio Combining)、等增益合并(EGC:Equal Gain Combining)、选择式合并(SC:Selection Combining)和切换合并(Switching Combining)。注:曲线A表示在深衰落情况下无分集时的相对电平累积分布曲线;曲线B 表示采用分集接收的相对电平累积分布曲线。

在MIMO系统中,分集增益与阵列增益有什么区别

  目前在4G通信网络LTE中确实运用到了MIMO即多收多发,指在发送端或接收端采用多天线进行数据传输并结合一定的信息处理技术来达到系统容量最大化,质量最优的技术的集合。常用的MIMO有DL 4*2及DL 2*2 MIMO。DL 4*2表示基站侧有4根天线进行发射数据,UE侧采用2天线接收。  无线空口技术在时域及频域的使用达到极限,如何更高的容量达以满足日益发展的需求?MIMO能够利用空间维度的资源、提高频谱效率。使信号获得更大的系统容量、更广的覆盖和更高的用户速率。  MIMO是LTE系统的重要技术,理论计算表明,信道容量随发送端和接收端最小天线数目线性增长,所有MIMO模式下信道容量大于单天线模式下的信道容量。MIMO能够更好的利用空间维度的资源、提高频谱效率。使信号在空间获得阵列增益、分集增益、复用增益和干扰抵消增益等,从而获得更大的系统容量、更广的覆盖和更高的用户速率。  复用增益  在相同带宽,相同总发射功率的前提下,通过增加空间信道的维数(即增加天线数目)获得的吞吐量增益。  分集增益  MIMO系统对抗信道衰落对性能的影响,利用各天线上信号深衰落的不相关性,减少合并后信号的衰落幅度(即信噪比的方差)而获得性能增益。  阵列增益  MIMO系统利用各天线上信号的相关性和噪声的非相关性,提高合并后信号的平均SINR而获得的性能增益。  干扰抵消增益  通过利用IRC或其它多天线干扰抵消算法,为系统带来的干扰场景下的增益。


分集技术的三种合并方式性能比较

可以看出,在这三种合并方式中,最大比值合并的性能最好,选择式合并的性能最差。当N较大时,等增益合并的合并增益接近于最大比值合并的合并增益。 分集改善效果指采用分集技术与不采用分集技术两者相比,对减轻深衰落影响所得到的效果(好处)。为了定量的衡量分集的改善程度,常用标称改善效果,即用分集增益和分集改善度这两个指标来描述。分集改善效果分集增益是指在某一累积时间百分比内,分集接收与单一接收时的收信电平差。这一电平差越大,分集增益越高,说明分集改善效果越好。积累时间百分比越小,分集增益越高。0.1%时间百分比的分集增益为14dB意味着:无分集时由曲线A查出此时的衰深深度比自由空间收信电平低30dB;采用分集技术后,由曲线B查出此时的衰落深度仅比自由空间收信电平低16dB。可见分集接收使衰落深度减轻了14dB。 分集改善度是指在某一相对的收信电平时,单一接收与分集接收的衰落累积时间百分比之比。当收信电平低于自由空间收信电平20dB时,单一接收与分集接收对于同一收信电平,其衰落的累积时间百分比分别为1%和0.01%,两者的比值为100,亦即分集改善为100。在数字微波系统中,不管采用哪一种分集接收方式,都会使系统的有效衰落储备增加,即抗频率选择性衰落的能力增强。还能不同程度地改善带内失真,改善交叉极化鉴别度。基于其技术的数字移动微波主要以进口产品为主,如日立、汤姆迅等,我所的这方面研究正加紧进行,不久即将面世,到那时,移动数字微波将会提供高质量的数字信号,更好的为广播电视等行业服务。

什么叫天线增益,什么是天线增益

1.天线增益是指:在输入功率相等的条件下,实际天线和理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

2.它定量地描述一个天线把输入功率集中辐射的程度。

3.增益显然和天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。

4.天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

5.一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。

6.计算公式:1)天线主瓣宽度越窄,增益越高。

7.对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}式中,2θ3dB,E和2θ3dB,H分别为天线在两个主平面上的波瓣宽度。

8.32000是统计出来的经验数据。

9.2)对于抛物面天线,可用下式近似计算其增益:G(dBi)=10Lg{5×(D/λ0)2}式中,D为抛物面直径。

10.λ0为中心工作波长。

11.5是统计出来的经验数据。

12.3)对于直立全向天线,有近似计算式G(dBi)=10Lg{2L/λ0}式中,L为天线长度。

13.λ0为中心工作波长。


天线增益和天线效率

物联网领域的发展离不开无线通信技术,无线通信技术的发展越来越追求低功耗、长距离,这些都离不开天线技术。本文主要厘清天线几个基本概念。

天线的原理是利用高频交变电流,变化的电场产生变化的磁场,变成的磁场产生变化的电场,不断激发形成无线电磁波传输。

dbm翻译成中文是分贝毫瓦,是一个表示无线功率的绝对值。它的数值是以1mw功率为基准的一个比值。计算公式如下:dbm=10log(p/1mw)。比如:WIFI路由器的功率是100mw,那么它的发射信号强度就是20dbm。
例如CC2642芯片的最大发射功率是5dBm,换算成毫瓦即 10^0.5=3.1mW;nRF52840最大发射功率8dBm,即6.3mW。0dBm对应1mW

常用的两种理想天线叫 均向辐射体 和 双偶极子天线

各向同性辐射体 (英文名:isotropic antenna)是电磁波或声波的理论点源,其在所有方向上辐射相同强度的辐射。它没有首选的辐射方向。它在以辐射源为中心的球体上向各个方向均匀辐射。
现实中并不存在理想的辐射点源,但是一些尺寸比较小的天线在较远的距离上可以看作均向辐射体。

偶极子天线(英文名:Dipole antenna或doublet)由一对对称放置的导体构成,导体相互靠近的两端分别与馈电线相连。 用作发射天线时,电信号从天线中心馈入导体;用作接收天线时,也在天线中心从导体中获取接收信号。偶极子天线是在无线电通信中,使用最早、结构最简单、应用最广泛的一类天线。

理想的天线可以将所有能量发射出去,实际中的天线可能由于阻抗匹配等原因,只能发射一部分能量,另一部分损耗了。天线效率指的是天线发射出去的功率占输入功率的比例,总是小于100%。

不同的天线其波束形状各不相同,天线增益是描述天线方向性+天线效率的一个综合指标。天线增益定义为在信号最强的方向上,信号的发射强度,与相同功率驱动的理想均向辐射体的信号强度的比值(dBi),或者与相同功率驱动的双偶极子天线在最强方向上信号强度的比值(dBd)。
理想的双偶极子天线增益为2.15dBi,因此Gain(dBd)=Gain(dBi)-2.15
天线增益可以很大,也可以很小,主要取决于天线的方向性,以及天线效率。

例如下图是一个典型板载偶极天线的测试报告,可以看到,天线效率是43%,天线增益是3.43dBm。此天线有方向性,在最强的方向上,其发射功率比理想均向辐射体强大约一倍多,但是更多的方向上要比均向辐射体弱。

关于BLE设备信号传输距离的估算, 官方网站 给出了一个估算器,结合模式,发送功率,天线增益,可以计算出通信距离范围




https://new.qq.com/omn/20210404/20210404A027J400.html
https://zhuanlan.zhihu.com/p/360479857
https://zhuanlan.zhihu.com/p/367186279
https://www.antenna-theory.com/cn/basics/gain.php


超大规模MIMO技术

超大规模MIMO技术是大规模MIMO技术的进一步演进升级。天线和芯片集成度的不断提升将推动天线阵列规模的持续增大,通过应用新材料,引入新的技术和功能(如超大规模口径阵列、可重构智能表面(RIS)、人工智能和感知技术等),超大规模MIMO技术可以在更加多样的频率范围内实现更高的频谱效率、更广更灵活的网络覆盖、更高的定位精度和更高的能量效率。

超大规模MIMO具备在三维空间内进行波束调整的能力,除地面覆盖之外,还可以提供非地面覆盖,如覆盖无人机、民航客机甚至低轨卫星等。随着新材料技术的发展,以及天线形态、布局方式的演进,超大规模MIMO将与环境更好地融合,进而实现网络覆盖、多用户容量等指标的大幅度提高。分布式超大规模MIMO有利于构造超大规模的天线阵列,网络架构趋近于无定形网络,有利于实现均匀一致的用户体验,获得更高的频谱效率,降低系统的传输能耗。此外,超大规模MIMO阵列具有极高的空间分辨能力,可以在复杂的无线通信环境中提高定位精度,实现精准的三维定位;超大规模MIMO的超高处理增益可有效补偿高频段的路径损耗,能够在不增加发射功率的条件下提升高频段的通信距离和覆盖范围;引入人工智能的超大规模MIMO技术有助于在信道探测、波束管理、用户检测等多个环节实现智能化。

超大规模MIMO所面临的挑战主要包括成本高、信道测量与建模难度大、信号处理运算量大、参考信号开销大和前传容量压力大等问题,此外,低功耗、低成本、高集成度天线阵列及射频芯片是超大规模MIMO技术实现商业化应用的关键。


常用的分集技术和合并技术有哪些?各有什么优缺点?

亲亲,你好
接收合并技术是一项研究利用信号的基本参量在时域、频域与空域中,如何分散开又如何收集起来的技术。在接收端取得若干条相互独立的支路信号以后,可以通过合并技术来得到分集增益。从合并所处的位置来看,合并可以在检测器以前,即在中频和射频上进行合并,且多半是在中频上合并;合并也可以在检测器以后,即在基带上进行合并。合并时采用的准则与方式主要分为四种:最大比值合并(MRC:Maximal Ratio Combining)、等增益合并(EGC:Equal Gain Combining)、选择式合并(SC:Selection Combining)和切换合并(Switching Combining)。最大比合并 在接收端由多个分集支路,经过相位调整后,按照适当的增益系数,同相相加,再送入检测器进行检测。在接受端各个不相关的分集支路经过相位校正,并按适当的可变增益加权再相加后送入检测器进行相干检测【摘要】
常用的分集技术和合并技术有哪些?各有什么优缺点?【提问】
亲,您好呀!很高兴由我来为您解答,我整理答案可能需要几分钟的时间,请您耐心等候哟☺️……。【回答】
亲亲,你好
接收合并技术是一项研究利用信号的基本参量在时域、频域与空域中,如何分散开又如何收集起来的技术。在接收端取得若干条相互独立的支路信号以后,可以通过合并技术来得到分集增益。从合并所处的位置来看,合并可以在检测器以前,即在中频和射频上进行合并,且多半是在中频上合并;合并也可以在检测器以后,即在基带上进行合并。合并时采用的准则与方式主要分为四种:最大比值合并(MRC:Maximal Ratio Combining)、等增益合并(EGC:Equal Gain Combining)、选择式合并(SC:Selection Combining)和切换合并(Switching Combining)。最大比合并 在接收端由多个分集支路,经过相位调整后,按照适当的增益系数,同相相加,再送入检测器进行检测。在接受端各个不相关的分集支路经过相位校正,并按适当的可变增益加权再相加后送入检测器进行相干检测【回答】
亲亲 您好 以上是小编的回答,您可以参考一下,希望对你有所帮助,😝😝😝如有疑问也可以继续追问,祝您生活愉快。😝😝😝【回答】


常用的分集技术和合并技术有哪些?各有什么优缺点?

亲亲,你好接收合并技术是一项研究利用信号的基本参量在时域、频域与空域中,如何分散开又如何收集起来的技术。在接收端取得若干条相互独立的支路信号以后,可以通过合并技术来得到分集增益。从合并所处的位置来看,合并可以在检测器以前,即在中频和射频上进行合并,且多半是在中频上合并;合并也可以在检测器以后,即在基带上进行合并。【摘要】
常用的分集技术和合并技术有哪些?各有什么优缺点?【提问】
亲亲,你好接收合并技术是一项研究利用信号的基本参量在时域、频域与空域中,如何分散开又如何收集起来的技术。在接收端取得若干条相互独立的支路信号以后,可以通过合并技术来得到分集增益。从合并所处的位置来看,合并可以在检测器以前,即在中频和射频上进行合并,且多半是在中频上合并;合并也可以在检测器以后,即在基带上进行合并。【回答】
合并时采用的准则与方式主要分为四种:最大比值合并(MRC:Maximal Ratio Combining)、等增益合并(EGC:Equal Gain Combining)、选择式合并(SC:Selection Combining)和切换合并(Switching Combining)。最大比合并 在接收端由多个分集支路,经过相位调整后,按照适当的增益系数,同相相加,再送入检测器进行检测。在接受端各个不相关的分集支路经过相位校正,并按适当的可变增益加权再相加后送入检测器进行相干检测【回答】


MIMO天线基础

姓名:杜旺旺;学号:20021210938;学院:电子工程学院

原链接:https://blog.csdn.net/weixin_40935509/article/details/82381211

【嵌牛导读】mimo天线表示多输入多输出。通常用于 ieee 802.11n,但也可以用于其他802.11技术。mimo技术大致可以分为两类:发射/接收分集和空间复用。mimo天线有时被称作空间多样,因为它使用多空间通道传送和接收数据,利用mimo技术可以提高信道的容量。

【嵌牛鼻子】MIMO天线基本概念

【嵌牛正文】

不断提高空中接口的吞吐率是无线制式的发展目标。MIMO多天线技术是LTE大幅提升吞吐率的物理层关键技术。MIMO技术和OFDM技术一起并称为LTE的两大最重要物理层技术。

1.MIMO基本原理

最早的多天线技术是一种接收分集技术。多条接收通道同时处于深度衰落的可能性比单天线通道处于深度衰落的可能性小很多。接收分集可以提高无线传输的可靠性,基站侧布置多个接收天线实现上行接收分集较为容易。但终端侧布置多个天线会提高手机复杂度和成本,实现较困难,那能不能在基站侧实现发射分集(多天线发射相同的数据流)来提高下行传输可靠性呢?人们尝试这样做,但发现多天线发送相同的数据流,他们是相互干扰的,甚至会相互抵消,起不到分集的作用。想要实现发送分集,必须解决发送天线之间无线链路的正交性问题。多天线正交性的问题最终被攻克,于是MIMO技术成熟。

1.1 数学模型

由于数据看不见摸不着,把数据看作从仓库A搬运到仓库B的货物,如图所示。

装货点A1有1/3的货物到了卸货点B1,2/3到卸货点B2;装货点A2有3/4货物到了卸货点B1,有1/4到卸货点B2。在B1有1个货物的损失,在B2有两个货物的损失。于是装货点的货物数量x1、x2和卸货点数量y1、y2数量关系如下:

可以用矩阵关系表示上述数量关系:

借鉴类似思路,可以给MIMO系统建立数学模型。在发射端和接收端分别设置多个天线,如图

上面s1、s2和r1、r2的关系可以用如下矩阵表示:

(其实只要记H矩阵是接收天线数×发射天线数就行了,也不用死记硬背)。

MIMO系统是在发射端和接收端同时采用多天线的技术,广义上SISO,SIMO,MISO也是MIMO的特例。

1.2 极限容量

香农给出了单发射天线、单接收天线的SISO无线信道的极限容量公式:

B为信道带宽,S/N为接收端信噪比。由香农公式,提高SNR或带宽可以增加无线信道容量。但发射功率P和带宽都是有一定限度的。在一定带宽条件下,SISO无论采用什么样的编码和调制方式,系统容量都不可能超过香农公式极限。目前广泛使用的Turbo码、LDPC码,使信道容量逼近了信道容量极限。

但多天线的情况下,信道容量随着接收天线数量Mr的增加而增加,两者为对数关系;信道容量也随着发射天线数量Mt的增加而增加,两者也为对数关系;

也就是说发射分集和接受分集可以改善接收端的信噪比,从而提高信道容量和频谱效率,但对信道容量的提升也是有限的,仅为对数关系。

MIMO系统容量会随着发射端或接收端天线数中较小的一方min(Mr,Mt)的增加而线性增加(不是对数增加)。

例如,从MIMO系统极限容量公式可以看书,2×2天线配置的MIMO系统和2×4天线配置的MIMO系统的极限容量是接近的。因为二者的最小天线数目一样,都是2。但发射天线数目翻倍也不是一点作用都没,发射天线数目翻倍起到了分集作用,改善了接收端信噪比。两者虽然极限容量一样,但2×4的天线配置方式,下行的平均容量会提高。

1.3 多天线技术增益

阵列增益:在单天线发射功率不变的情况下,增加天线个数,可使接收端通过多路信号的相干合并,获得平均信噪比(SNR)的增加。阵列增益是和天线个数(M)的对数lg(M)强相关的,阵列增益可以改善系统覆盖。

功率增益:覆盖范围不变时增加天线数目可以降低天线口发射功率,继而可以降低对设备功放线性范围的要求。若单天线发射功率不变,采用多天线发射相当于总的发射功率增加,从而增加覆盖范围。

分集增益:同一路信号经过不同路径到达接收端,可以有效对抗多径衰落,减少接收端SNR的波动。独立衰落的分支数目越大,接收端信噪比波动越小,分集增益越大。分集增益可以改善系统覆盖,增加链路可靠性。

空间复用增益:提高极限容量和改善峰值速率。在天线间互不相关前提下,MIMO信道的容量可随着接收天线和发射天线二者的最小数目线性增长。这个容量的增长就是空间复用增益。

干扰抑制增益:多天线收发系统中,空间存在的干扰有一定的统计规律。利用信道估计技术,选取不同的天线映射算法,选择合适的干扰抑制算法,可降低干扰。

2.MIMO的工作模式

MIMO系统就是多个信号流在空中的并行传输。在发射端输入的数据流变成几路并行的符号流,分别从Mt个天线同时发射出去;接收端从Mr个接收天线将信号接收下来,恢复原始信号。

多个信号流可以是不同的数据流,也可以是同一个数据流的不同版本。

不同的数据流就是不同的信息同时发射,意味着信息传送效率的提升,提高了无线通信的效率。

同一个数据流的不同版本,就是同样的信息,不同的表达方式,并行发射出去,确保接受端收到信息的准确,提高信息传送的可靠性。

为提高信息传送效率的工作模式,就是MIMO的复用模式;为提高信息传送可靠性的工作模式,就是MIMO的分集模式。

2.1 空分复用模式

空分复用(Space Multiplexing,SM)思想是把1个高速的数据流分割为几个速率较低的数据流,分别在不同的天线进行编码、调制,然后发送。天线之间相互独立,一个天线相当于一个独立的信道,接收机利用空间均衡器分离接收信号,然后解调、解码,将几个数据流合并,恢复出原始信号,如图所示。

一路数据变为多路数据的方法是贝尔实验室提出的时空转移大法:空时编码(Space Time Coding,STC),即BLAST(Bell Labs Layered Space-Time)技术。

将数据看作待转运的货物,为了快速地转运(复用)出去,可以把它安排在不同的地点(空间),也可以变换交货的时间。“不同的天线”就是空时编码中“空间”的概念;“不同的OFDM周期”就是空时编码中“时间”的概念。空时编码的最小单位是TB块(Transport block,传输块),TB块是一个子帧内含有的编码前比特数,由很多个RB组成。一个TTI是1ms。

空分复用(SM)常用的空时编码技术有两种:预编码(Precoding)、PARC(Per Antenna Rate Control,每天线速率控制)。

预编码技术把原始数据流两个符号分为一组进行变换,如某一组为”s1、s2“,转换成并行数据流”z1、z2“,然后分别由不同的天线发出去,如图所示。二者的关系式为:

其中V矩阵就是预编码矩阵,他就是负责把数据流转换到天线端口的数学变换公式。

PARC是不进行符号变换的,直接根据每个天线的信道条件调节其信息发送速率。天线信道好的,速率快一些,反之速率慢一些。速率本身也是一种时空编码,只不过一路天线速度快些,另一路慢些。在天线口,PARC的空时编码所做的工作就是直接把速率调节好的两列数据搬在天线口发射,可不做变换。

2.2 空间分集模式

空间分集(Space Diversity,SD)的思想是制作同一个数据流的不同版本,分别在不同的天线进行编码、调制,然后发送,如图所示,这个数据流可以是原来要发送的数据流,也可以是原始数据流经过一定的数学变换后形成的新数据流。同一个东西,不同的面貌。接收机利用空间均衡器分离接收信号,然后解调、解码,将同一数据流的不同接收信号合并,恢复出原始信号。空间分集可以起到可靠传输数据的作用。

不管是复用技术还是分集技术,都涉及把一路数据变成多路数据的技术,即时空编码技术。

空间分集常用的技术有STBC(空时块编码)、SFBC(空频块编码)、TSTD/FSTD(时间/频率转换传送分集)、CDD(循环延时分集)。

STBC主要思想是在空间和时间两个维度上安排数据流的不同版本,可以有时间和空间分集的效果,从而降低信道误码率提高可靠性。如图所示,天线1上两个符号s1,s2分别放在1个子帧两个时隙的第一个OFDM符号周期上;天线2上这两个符号调换一下时隙位置,把他们的另一个版本-s2*、s1*分别放在这个子帧的两个时隙上。

SFBC的主要思想是在空间和频率两个维度上安排数据流的不同版本,可以有空间分集和频率分集的效果。在天线1上,两个符号s1、s2分别安排在两个相邻的子载波上,在天线2上,这两个符号调换一下子载波的位置,把它们的另一个版本-s2*、s1*分别放在这两个子载波上。

TSTD也是在空间和时间两个维度上安排数据流的不同部分,有空间和时间分集的效果。在天线1和天线2的时隙位置上,交叉安排符号流s1、s2,符号排队等待发射,在第一个符号周期,这个符号放在天线1上发射,下一符号周期则放在天线2上发射,以此类推。

TSTD/FSTD技术的矩阵表示形式如图所示,

2.3 多天线工作模式对比

多天线技术主要指以下四种:空间复用、空间分集、空分多址(SDMA)、波束赋型。

空间分集利用天线间的不相关性来实现,这个不相关要求天线间距在10个电磁波波长以上。目的是提高链路质量而不是链路容量。

空间复用也是利用天线间不相关性来实现的。一般需要多个发射和接受天线,是一种MIMO方式,也可以是智能天线方式。在复用时,并行发射和接受多个数据流,目的是调高链路容量(峰值速率),而不是链路质量。

空分多址是利用相同的时隙、相同的子载波,但不同的天线传送多个终端用户的数据。不同用户的数据如果要彼此相互区别就要求天线间的不相关性。空分多址的主要目的是通过空间上区别用户,在链路上容纳更多的用户,提高容量。

波束赋型利用电磁波之间的相干特性,将电磁波的能量(波束)集中于某个特定的方向上。不同于以上三种,波束赋型利用的是天线阵元之间的相关性。因此波束赋型要求天线之间的距离小一些,通常在波长的1/2左右。主要目的是增强覆盖和抑制干扰。使用波束赋型的多天线技术,就是传统的智能天线(Smart Antenna)技术,也叫AAS(Adaptive Antenna System,自适应天线系统)。TD-SCDMA系统的关键技术就是智能天线。

MIMO主要利用天线之间的不相关性,而智能天线主要利用天线间的相关性。MIMO可有效克服多径效应;而智能天线克服多径能力有限但抗干扰效果较好。

2.4 MIMO工作模式小结

MIMO系统可根据不同的系统条件、变化的无线环境采用不同的工作模式,协议中定义了以下七种MIMO的工作模式:

1.单天线工作模式:传统个无线制式的天线工作模式。

2.开环发射分集:利用复数共轭的数学方法,在多个天线上形成了彼此正交的空间信道,发送相同的数据流,提高传输可靠性。

3.开环空间复用:在不同的天线上人为制造“多径效应”,一个天线正常发射。其他天线引入相位偏移环节。多个天线的发射关系构成复矩阵,并行地发射不同的数据流。这个复矩阵在发射端随机选择,不依赖接收端的反馈结果,就是开环空间复用。

4.闭环空间复用:发射端在并行发射多个数据流的时候,根据反馈的信道估计结果,选择制造“多径效应”的复矩阵,就是闭环空间复用

5.MU-MIMO:并行传输的多个数据流是由多个UE组合实现的,就是多用户空间复用。

6.Rank=1的闭环发射分集:作为闭环空间复用的一特例,只传输一个数据流,也就是说空间信道的秩Rank=1。这种工作模式起到的是提高传输可靠性的作用,实际上是一种发射分集的方式。

7.波束赋型:多个天线协同工作,根据基站和UE的信道条件,实时计算不同的相位偏移方案,利用天线之间的相位干涉叠加原理,形成指向特定UE的波束。

3.MIMO系统的实现

把货物运送的港口的过程分为三个步骤:

步骤一:打包方式的选择(类似传输块TB的形成);

步骤二:根据货物的种类和去往的目的地进行初步的分类(类似层映射);

步骤三:运输公司的选择(预编码矩阵的选择)。

运输公司确定好之后,由运输公司选择港口,而发货方无须关心由哪个港口发送。

不同港口对应着不同的运输公司和运输航道。如何选择港口来发送货物?

有两种方式:开环方式和闭环方式

开环就是根据自己对港口的条件判断发货,无须等待接收货物方对发货质量的确认。

闭环则要等待货物接收方对运送质量的反馈,来决定选择什么样的包装方式和运输公司

3.1 信息处理过程(这一小节的知识涉及到很多通信技术)

以发送图片为例,经过手机高层对照片的处理,把照片变成了告诉的比特流,这个过程就是信源编码的过程。这些告诉比特流要在MAC层按照一定的方式进行打包封装,形成传输块(TB)。TB就是MAC层传到物理层的货物。TB是一个子帧内含有信道编码前的比特数据,时间长度为1ms(一个TTI)。一个TB由很多个RB组成,也就是说,TB块有大有小,取决于调度器(Scheduler)分配给某用户的资源数量、调制编码方式、天线映射方式等。

照片变成TB块,送到LTE物理层之后,所经过的处理如图。

TB块到了物理层,首先要进行信道编码。

信道编码的目的是使数据流具有纠错能力和抗干扰能力。信道编码是在源比特数据流中按照一定规则加入一些冗余比特,接收端可以用来判断或纠错。

常用的信道编码规则是Turbo编码。Turbo码接近了香农公式所揭示的信道极限容量。但在大数据量的情况下,LDPC(低密度奇偶校验码)可获得比Turbo码更高的编码增益,同时还能降低接收端解码的复杂度,受到很多公司推崇。

信道编码的目的是增加无线通信可靠性,但它增加了冗余比特,使有用信息数据传输比例减少,增加了系统开销。

接下来的过程是交织。交织的过程是打乱原来的比特流顺序。这样做之后,连续的深衰落对信息的影响实际是作用在打乱顺序的比特数据流上;在恢复原来的顺序后,这个影响就不是连续的了,而是离散的,就可以方便地根据冗余比特恢复受干扰的原始数据。

加扰是对编码后的数据逐比特地与扰码序列进行运算。扰码序列是一种PN序列(Pseudo-Noise Sequence,伪噪声序列)。PN码可以将数据间的干扰随机化,可以对抗干扰。同时使用PN序列加扰,类似给数据上了一把锁,而这个PN序列就是钥匙。在接收端,有了这把钥匙才能开始这把锁。也就是说加扰起到了保密的作用,可以对抗窃听。

调制是将比特数据流映射到复平面上的过程,也叫复数调制。QAM是幅度、相位联合调制技术,它同时利用了载波的幅度和相位来传递信息比特。

复平面这种数学工具很适合用来表示这种既有幅值调制,又进行相位调制的变换关系。

如果说调制后的符号为x,x可以用I和Q来表示,即x=I+jQ。符号的I、Q分量,分别对应复平面的实部和虚部,也就是水平和垂直方向。

复数调制的输入是由0、1组成的比特流,输出的是I、Q值。映射出来的I、Q分量,再采用幅度调制,分别调制在相互正交的两个载波(如cos wt和sin wt)上或相互正交的两个时隙上。

LTE的复数调制有BPSK、QPSK、16QAM、64QAM。对比3G HSDPA中最高阶的调制方式仅到16QAM,而LTE中最高阶的调制方式可到64QAM。

完成调制后,基带将进行MIMO相关的处理。将信道编码、调制后的比特数据流送到发射天线端口的过程有两个子过程:层映射和预编码。

数据流的数量和发送天线数量是不一致的,将数据流比特送到不同的发送天线、不同时隙、不同子载波上,是一个复杂的数学变换过程。这个过程使用层映射和预编码来完成。

为什么不把多路数据流通过一步数学变换,直接映射到天线口,而要增加一个中间层呢?

中间层的增加好比从海口坐火车到哈尔滨,在中间站北京换乘一下;换乘站的增加使铁路交通系统的运输安排简化了。

同样道理,增加层映射的目的就是为了将复杂的数学变换简单化。无线环境很复杂,要根据无线环境选择MIMO的应用模式,比如选择复用还是分集?如何复用或分集?

层数(Layer)是由信道的秩确定的,而信道的秩代表着一定无线环境下,MIMO系统彼此独立的通道数。层数一般小于等于信道矩阵的秩,当然也小于等于物理信道传输所使用的天线端口数量P。

层映射就是将编码调制后的数据流按照一定规则重新排列,将彼此独立的码字映射到空间概念层上。这个空间概念层是到物理天线端口的中转站。通过这样的转换,原来串行的数据流就有了初步的空间概念。

预编码是将层数据映射到不同的天线端口,不同的子载波上,不同的时隙上,以便实现分集或复用的目的。预编码过程就是空时编码的过程。从编码调制后的数据发送到天线口的过程。以公司发货过程为例,层映射就是将自己的货物初步分类,而预编码过程则是运输公司安排不同的发货方式。

预编码后的数据已经确定了天线端口,也就是说确定了空间维度的资源;在每个天线端口上,将预编码后的数据对应在子载波和时隙组成的二维物理资源(RE)上。接下来生成OFDM符号,插入CP,然后从各个天线端口发送给出去。

在接收端,通过多天线接收机将接收下来的信号,从OFDM的时频资源读取相应的数据,经过预编码与层映射逆过程,然后解调、去扰、去交织、解码,最后恢复出原始信息比特。

层映射、预编码及其逆过程,如同求解线性方程组的未知数一样,只不过发送过程和接受过程要求解的未知数不一样而已。

到此为止,另一方就能接收到发送方发送的照片了。

之后是层映射、预编码、自适应MIMO和多用户MIMO等详细的MIMO知识,不写了,感兴趣可以查看书本。

传输块(Transport block)

一个传输块就是包含MAC PDU的一个数据块,这个数据块会在一个TTI上传输,也是HARQ重传的单位。LTE规定:对于每个终端一个TTI最多可以发送两个传输块。这个是针对某个UE,而对于eNodeB,每个TTI调度的传输块就不止两个,因为可以同时调度多个UE。TB是MAC的概念。

码字(codeword)

一个码字就是在一个TTI上发送的包含了CRC位并经过了编码(Encoding)和速率匹配(Ratematching)之后的独立传输块(transport block)。LTE规定:对于每个终端一个TTI最多可以发送两个码字。通俗来说,码字就是带有CRC的TB。

层映射(Layer mapping)

将对一个或两个码字分别进行扰码(Scrambling)和调制(Modulation)之后得到的复数符号根据层映射矩阵映射到一个或多个传输层。层映射矩阵的维数为C×R,C为码字的个数,R为阶(Rank),也就是使用的传输层的个数。

天线端口(Antenna Port)

天线端口是逻辑概念,一个天线端口(antenna port)可以是一个物理发射天线,也可以是多个物理发射天线的合并。在这两种情况下,终端(UE)的接收机(Receiver)都不会去分解来自一个天线端口的信号,因为从终端的角度来看,不管信道是由单个物理发射天线形成的,还是由多个物理发射天线合并而成的,这个天线端口对应的参考信号(ReferenceSignal)就定义了这个天线端口,终端都可以根据这个参考信号得到这个天线端口的信道估计。

码字个数、阶和天线端口数之间的关系

传输块个数 = 码字个数(C )<=阶(R)<=天线端口数(P)

后面三个名词概念是物理层最基本但又比较抽象。回到3GPP 36.211 6.3节,下行物理链路过程如下:

对于测试工程师而言,物理层也只需要知道概述就行。而且现在很多芯片厂商,都把物理底层实现,并且是黑盒的,硬件实现,软件开发方面也了解不到更细致的地方。


上一篇:废液处理

下一篇:分娩征兆