山西省柳林区块水文地质条件及其对煤层气富集成藏的影响
张文忠 周尚忠 孟尚志 赵军 莫日和( 中联煤层气有限责任公司 北京 100011)摘 要: 柳林区块位于山西省西部,西邻黄河,前期勘探和试生产显示该区块煤层气勘探开发具有广阔的前景。为尽快在该地区实现煤层气商业化生产,最大限度地满足当地对煤层气资源的需求,寻找煤层气富集高产区显得至关重要。本文根据柳林地区煤层气赋存特征与地下水化学场、动力场的耦合关系,探讨了水文地质条件与煤层气富集成藏的关系,结果显示柳林区块地下水顺地层向西部深处流动,越往西部深处水动力越弱,越有利于煤层气的富集成藏。关键词: 柳林区块 煤层气 水文地质条件 富集成藏基金项目: 国家科技重大专项 “大型油气田及煤层气开发”项目 62 ( 2011ZX05062)作者简介: 张文忠,男,工程师,1979 年出生,博士,2009 年毕业于中国地质大学 ( 北京) ,现在中联煤层气有限责任公司工作,电话: 01064297957,邮箱: zwz98413@163. com。Hydrogeologic Conditions and Its Influence on Coalbed Methane Accumulation in Liulin Block,Shanxi ProvinceZHANG Wenzhong ZHOU Shangzhong MENG Shangzhi ZHAO Jun MO Rihe( China United Coalbed Methane Co. ,Ltd. ,Beijing 100011,China)Abstract: Liulin Block lies in the west of Shanxi Province,previous exploration and trial production indi- cates that this block has vast potential for future development. For the purpose of realizing CBM commercial produc- tion,it’ s vital to find CBM-rich areas and high-yield areas. According to the spatial coupling relation of CBM ac- cumulation with groundwater geochemical field and dynamic field,this paper discusses the relationship between hydrogeologic conditions and CBM accumulation. The result shows the ground water of Liulin Block flows from northeast to southwest,the hydrodynamic condition is weak in the west and it is more suitable for CBM accumula- tion.Keywords: Liulin Block; coalbed methane; hydrogeologic condition; accumulation煤层气是煤在煤化作用过程中生成,主要以吸附状态赋存于煤层内的以 CH4为主要成分的非常规天然气。煤层气是优质的能源和基础化工原料,具有热值高、污染少、安全性高的特点,是石油和天然气等常规地质能源的重要补充。煤层气同时又是一种有害的危险气体,煤层气中CH4的温室效应约是CO2的21倍,对大气臭氧层造成的破坏是CO2的7倍(赵庆波等,1998),对生态环境破坏性极强;煤层气的易燃易爆性也严重危及着煤矿的安全生产,因此,对煤层气有效利用,对于缓解我国能源供应的紧张局面、减少温室气体排放、提高煤矿的安全生产及拉动其他相关产业的发展具有重要的意义。柳林区块位于山西省西部,河东煤田中部,西邻黄河,面积约183km2。柳林区块位于鄂尔多斯盆地东缘中部的离石鼻状构造上,主体构造为一个弧顶向西突出的弧状褶皱。区块内断层较少,仅在区块北部发育由聚财塔南北正断层组成的地堑及其派生的小型断层。柳林地区发育煤层14层,其中山西组5层,自上而下编号为1、2、3、4(3+4)、5号煤层;太原组9层,自上而下编号为6上、6、7、7下、8+9、9下、10、10下、11号煤层。其中山西组的2、3、4(3+4)、5号煤层,太原组的8+9、10号煤层为煤层气勘探开发的主力煤层(任光军等,2008)。1 柳林区块水文地质条件概述1.1 含水层类型及分布柳林地区有六套主要含水层组,分别是:奥陶系中统石灰岩岩溶裂隙含水层组、石炭系上统太原组灰岩岩溶裂隙含水层组、二叠系下统山西组砂岩裂隙含水层组、二叠系上、下石盒子组和石千峰组砂岩裂隙含水层组、三叠系砂岩裂隙含水层组与新近系、第四系砂砾石(岩)孔隙含水层组(图1)。其中石炭系上统太原组灰岩岩溶裂隙含水层组和二叠系下统山西组砂岩裂隙含水层组是与煤层气开采直接相关的两套含水层组。奥陶系中统石灰岩岩溶裂隙含水层组由上、下马家沟组和峰峰组组成,为一套以石灰岩、泥灰岩、白云岩等碳酸盐岩为主的浅海相沉积,在柳林区块以东外围大面积出露,该套含水层组呈单斜构造,自东向西埋深逐渐增大,含有丰富的岩溶水,是区域的主要含水层系。石炭系上统太原组灰岩岩溶裂隙含水层组主要由石炭系上统太原组间夹于碎屑岩中的5层石灰岩(L1-L5)组成,在区块东部的大沟谷中零星出露,由东向西,埋深逐渐增大(图2)。储水空间主要是构造、溶蚀裂隙以及溶蚀孔洞,富水性在不同地点差别较大。柳林区块东缘岩溶发育,连通性好,接受补给容易,富水性较强。向西随着地层埋深的逐渐增大,灰岩的岩溶、裂隙逐渐变得不是很发育,富水性也逐渐变差,总体来说,该套含水层组的富水性是较强的。二叠系下统山西组砂岩裂隙含水层组由K3砂岩组成,在柳林区块东界外围有零星出露,含水层砂岩裂隙大部分充填方解石脉或钙质薄膜,开启性、连通性较差,储水空间小,富水性较弱。二叠系上、下石盒子组和石千峰组砂岩裂隙含水层由下石盒子组K4砂岩及上石盒子组和石千峰组的砂岩组成。K4砂岩节理、裂隙较发育,由于开启性差,且多充填方解石脉或钙质薄膜,再加上补给条件的限制,富水性差。上石盒子组和石千峰组砂岩富水性也较弱。三叠系砂岩裂隙含水层组以砂岩裂隙含水层为主,在柳林区块西南部与聚财塔地堑中出露,其富水性较差。图1 柳林区块含水层系划分图新近系、第四系砂砾石(岩)孔隙含水层组中孔隙发育,接受大气降水补给,形成孔隙潜水,受地形、补给条件及其分布面积的限制,富水性一般不强,经短途径流即排向河道或沟底补给地表水或渗入下伏岩层裂隙中,集中排泄时形成下降泉。1.2 流体场特征1.2.1 地下水补、径、排条件柳林区块地层总体向西倾伏,区域水文地质条件简单,为一西倾宽缓单斜蓄水构造,大气降水和东部灰岩的侧向补给是区块内所有地下水的主要补给源,有时大气降水成为各主要含水层唯一的补给源。地表河流多为季节性河流,不利于地下水补给或者补给量很小。受单斜构造的控制,柳林区块各主要含水层基本上都是在东部地层出露区接受大气降水的补给,然后由浅部流向深部。图2 柳林区块水文地质简易剖面图柳林区块地下水水位高程呈北高南低、东高西低的总体背景。地下水主要表现为顺层向深部流动,随侧向距离的延长,径流强度逐渐减弱。在山西组埋深大于500m处,地下水径流速度已经很缓慢,地下水径流基本处于滞流状。煤层底部奥陶系地层也表现出东、北部较高,逐渐向西、南部降低的一致趋势。根据围岩含水层对煤层供水强弱,将柳林区块煤层水分为三种类型。①煤层顶板为灰岩溶蚀孔型含水层,对煤层供水较为充足,煤层产水量大,石炭系太原组8号煤层属于此种类型;②煤层顶板或底板为砂岩孔隙、裂隙型含水层,对煤层供水有限,煤层产水量一般不大,二叠系山西组4号煤层属于此种类型;③煤层顶、底板皆为泥质岩,供水性差,渗透到煤层中的水极少,只有在断层或裂隙发育的部位才能提供给煤层,山西组5号煤层属于该种类型。1.2.2 地下水化学特征水化学成分是地下水运动的真实记录。煤层水化学研究是为了阐明地下水循环特征。柳林区块煤层水化学成分阴离子以HCO-3为主,含量一般2100~2400mg/L,8号煤层水的HCO-3含量略高于4、5号煤层水;其次是Cl-,另外含有少量CO-3和SO2-4。阳离子以Na+占主导,含量1300~1800mg/L,还含有少量K+、Ca2+、Mg2+和NH+4;pH值6.7~8.2。柳林区块4、5号煤层水矿化度高于8、9号煤层水,反映8、9号煤层水的活跃程度较高,4、5号煤层气富集的水文地质条件要好于8、9号煤层。2 水文地质条件与煤层气富集的关系2.1 水文地质控气作用煤系地层的水文地质条件是影响煤层气富集、保存、成藏及开采的重要地质因素之一。不同水文地质条件下,煤层瓦斯的富存条件不同,含气饱和度不同,造成煤层瓦斯含量的差别很大。某些水文地质条件对煤层瓦斯保存有利,而有些水文地质条件对煤层瓦斯保存却十分不利。水文地质控气作用可概括为三种特征:①水力运移逸散控气作用;②水力封闭控气作用;③水力封堵控气作用(叶建平等,2001)。水力封闭作用和水力封堵作用有利于煤层气的保存,而水力运移逸散作用则造成煤层气的散失。一般而言,地下水压力大,煤层气含量高,反之则低。地下水的强径流带煤层气含量低,而滞流带煤层气含量高。2.1.1 水力运移逸散控气作用水力运移逸散控气作用常见于导水性强的断层构造发育区,通过导水断层或裂隙,沟通煤层与含水层,水文地质单元的补、径、排系统完善,含水层富水性与水动力强,含水层与煤层水力联系较好,在地下水的运动过程中,地下水携带煤层中气体运移而逸散。2.1.2 水力封闭控气作用水力封闭控气作用发生于断裂不甚发育的宽缓向斜或单斜中,而且断裂构造主要为不导水性断裂,特别是一些边界断层,具有挤压、逆掩性质,成为隔水边界。水力封闭控气作用一般发生在深部,地下水通过压力传递作用,使煤层气吸附于煤中,煤层气相对富集而不发生运移,煤层含气量较高。2.1.3 水力封堵控气作用水力封堵控气作用常见于不对称向斜或单斜中。在一定压力差条件下,煤层气从高压力区向低压力区渗流,或者说由深部向浅部渗流。压力降低使煤层气解吸,因此在煤层露头及浅部是煤层气逸散带。如果含水层或煤层从露头接受补给,地下水顺层由浅部向深部运动,则煤层中向上扩散的气体将被封堵,致使煤层气聚集。2.2 地下水化学特征对煤层气成藏的影响对于含煤地层来说,不同类型的地下水反映不同的矿化度、盐度,而不同的矿化度、盐度对煤层气藏的影响不尽相同。因此,不同类型的地下水对煤层气成藏起着不同的作用。按地层水的化学性质,可将地层水分为CaCl2型、NaHCO3型和Na2SO4型三类。一般CaCl2型水是深层成因水,往往位于承压区,具有较高的矿化度。承压水封闭区煤层封闭条件较好,煤层气成藏条件有利,但承压水区煤层埋深往往大于1000m,孔渗条件较差,虽利于成藏,但不利于煤层气的开发。低矿化度的Na2SO4型地下水是地表补给水的标志,处于补给区或泄水区附近,煤层埋深较浅或侧向煤层已出露地表,是地表水沿露头区渗入煤层后产生水力交替的产物,常常与甲烷风化带相对应,煤层气成藏条件差。NaHCO3型地下水的矿化度介于前两者之间,煤层埋深主要在250~1000m之间,煤层埋藏适中,水力交替滞缓,在渗入水与地层水的接触面水流相反,产生局部滞流带,地层水流动不畅而形成超压,从而形成封堵型煤层气藏。2.3 柳林区块煤层气富集特点柳林区块地层水以NaHCO3型为主,局部地区有CaCl2或Na2SO4型(图3),总矿化度东低西高,纵向上,总矿化度由浅到深有逐渐增大的趋势,山西组地层水的Cl-含量明显高于太原组,反映了山西组地层水的封闭性要好于太原组。柳林区块上古生界煤系地层水化学特征显示出该区块的地层水与地表连通,但属较稳定承压水动力系统,相对较高矿化度的NaHCO3水型显示其对烃类的较好保存条件,并且在400m左右的埋深,Cl-含量能达到1000mg/L左右,为很有利于煤层气富集的水化学条件(王明明等,1998)。图3 柳林区块山西组地下水化学类型分布图综合来讲,可根据柳林地区煤层气赋存特征与地下水化学场、动力场的耦合关系,来探讨水文地质条件与煤层气富集的关系。水文地质参数、水位标高、矿化度、影响半径,都将对煤层气的生产能力产生显著影响。高含气带分布规律与地下水系统划分、水动力条件、矿化度分布规律具有对应关系。就柳林地区的水动力条件和水文地球化学特征来说,地下水顺地层向西部深处流动,且越往西部深处矿化度越大、水动力越弱,对煤层气富集越有利。3 柳林区块煤层气成藏模式柳林区块太原组与山西组煤层以焦煤、瘦煤为主,煤层气的富集表现为高含气量与厚煤带的叠合区域。埋深与水动力条件在很大程度上控制了煤层气的富集程度。3.1 太原组煤层气成藏模式太原组8+9、10号煤层为单斜水动力封闭成藏(图4)。由于补给区与径流区均在柳林区块外,柳林区块多为弱径流与滞流环境,有利于煤层气的保存。由北东向南西方向,随埋深加大,地层压力增加,煤层含气量相应增高。区块西南方向地下水径流作用弱,理论上有利于煤层气富集保存,虽然吨煤含气量可观,但由于富水性强,储层压力大,排水降压困难。加之煤层在此分岔变薄的趋势,不利于煤层气开发。图4 柳林区块太原组单斜水压封闭成藏模式图3.2 山西组煤层气成藏模式山西组3+4、5号煤层顶板主要为泥岩封盖,局部为粉砂岩,顶底板含水性较弱,虽然存在顶板砂岩裂隙含水层,但整体上不存在水动力运移逸散作用,含气饱和度达90%以上,为区域有效盖层气压封闭成藏(图5)。煤层厚度与埋深是煤层气富集的主控因素,柳林区块煤层含气量整体上随埋深增加逐渐增大,厚煤带发育区为煤层气富集的有利地区。图5 柳林区块山西组盖层气压封闭成藏模式图4 结论水动力条件直接影响着地层压力分布及流体的运移,由此改变吸附气与溶解气和游离气间原有的平衡,从而影响到煤层气的富集与保存。柳林区块太原组8号煤层与顶板灰岩为同一水动力系统,由于煤岩基质和地层水中存在较大的浓度梯度,煤岩中甲烷气体不断向上逸散,继而被交替地层水带走而难以保存在煤层中。因此,柳林区块太原组煤层整体含气饱和度偏低,含水饱和度较高,对后期排水降压不利。柳林区块山西组3+4、5号煤层顶板主要为泥岩封盖,局部为粉砂岩,顶底板含水性较弱,虽然存在顶板砂岩裂隙含水层,但整体上不存在水动力运移逸散作用,含气饱和度达90%以上,煤层气开采条件较好。参考文献任光军,王莉,娄剑青.2008.柳林地区水文地质特征及其对煤层气生产井的影响,2008年煤层气学术研讨会论文集[M].北京:地质出版社,378~389王明明,卢晓霞,金惠等.1998.华北地区石炭二叠系煤层气富集区水文地质特征[J].石油实验地质,20(4):385~393叶建平,武强,王子和.2001.水文地质条件对煤层气赋存的控制作用[J].煤炭学报,26(5):459~462赵庆波,刘兵,姚超等.1998.世界煤层气工业发展现状[M].北京:地质出版社,1~2
矿井水文地质条件
一、矿区水文地质特征焦作矿区突水频繁,涌水量大,淹井次数多,从客观上讲,主要受矿区水文地质条件制约。具体表现是区域地下水补给量大;含水层层数多,厚度大,隔水层薄;断裂构造发育,使各含水层之间水力联系密切(图4-4)。1.区城地下水补给充沛焦作矿区北为太行山区,海拔标高+200~+1700m,为构造剥蚀的中低山地貌,广泛出露奥陶—寒武系巨厚(800~1000m)的碳酸盐岩,地形陡峭,深山峡谷,喀斯特裂隙发育。大气降水后由地表短暂径流转入地下径流,汇水面积2000km2左右。地下水自北和西北方向向矿区内径流,在矿区南部受到武陟隆起(前震旦系地层)和断距千米以上断层(董村、朱村、耿黄等)的阻挡,使地下水在矿区内排泄。20世纪60年代前以天然泉水的形式排泄地下水,如九里山前泉群总流量达1.6m3/s,20世纪60年代后以矿井排水和工农业用水的形式排泄地下水(Q=9.9m3/s)。2.断裂构造控水作用强矿区内断裂构造皆为正断层,EW,NE和NW向3组断裂构造纵横交错,互相切割,形成许多条条块块,但没有破坏奥灰的连续性,使各块段〔或井田〕奥灰水力联系密切,形成统一水位。在焦作矿区59次10m3/min以上突水事故中,断层突水占58%;100m3/min以上突水7次,其中断层突水占85.71%。在14次突水淹井事故中,因断层突水淹井占85.71%。这充分说明断裂构造对地下水的富集、径流(运移)到突水起重要控制作用。图4-4 焦作区域水文地质图二、矿井主要含水层及其关系与矿井充水有直接关系的含水层,自上而下分别是第四系砂砾石含水层、二叠系砂岩含水层、石炭系太原组石灰岩含水层和奥陶寒武系石灰岩含水层。图4-5 冲积层柱状图第四系冲积层厚29.39~200.31m,北薄南厚。北部煤层露头带附近冲积层厚75~120m,一般85m左右。由黄土、流砂砾石层、粘土和砾岩组成。上部为黄土、流砂砾石和粘土,中下部为砾岩和粘土,含砾岩5~11层,一般6~8层,且主要集中在中下部〔5~7层〕(图4-5)。砾岩总厚14.66~40.86m,占冲积层地层总厚22.21%~37.24%分布不稳定。上部和底部砾岩含水层具双层水位,均具承压水性质。底部砾岩直接覆盖在奥灰、L2和L8隐伏露头上。水位变化与奥灰呈同步关系,一般是奥灰水补给冲积层。所以在L8露头附近冲积层水和奥灰水联合对L8补给,是演马庄—九里山井田涌水量大,与其他矿井区别的重要条件之一。二叠系砂岩含水层分上下两层,即基岩风化带裂隙孔隙含水层和二1煤顶板砂岩含水层。基岩风化带含水层与冲积层水沟通时,富水性极强。浅部回采时,当导水裂隙带与风化带沟通时,涌水量很大。如13011工作面回采后顶板水达14.4m3/min。二1煤顶板砂岩含水层富水性较弱,对回采影响不大。石炭系太原组厚67.1~60.93m,距奥灰5.46~16.67m,一般10m左右,由砂岩、粉砂岩、石灰岩和煤层组成,含石灰岩6~10层(图4-6)。石灰岩总厚27.4~41.99m,占33.62%~55.71%,以L2和L8厚度大分布稳定。L8厚4.97~13.79m,一般厚8m左右,上距二1煤底板20.65~35.73m,西薄东厚。喀斯特以裂隙发育为主,根据勘探资料,见溶洞为20%左右。全矿现有L8涌水量96.33m3/min,L8水位下降极不均衡,12采区以东水位下降明显(±0m以下),西翼水位仍保持在+40~+60m。L2厚10.73~13.77m,一般厚12m左右,上距二1煤底板70.8~82.14m,一般75m左右,下距奥灰10m左右。喀斯特裂隙发育,水位与奥灰呈同步变化。其他矿井L2水位比奥灰低1~3m,而九里山矿二者水位相差不明显。本区西部,五灰、六灰、七灰较发育,总厚6~7m,相对削弱了L2与L8之间隔水性质,为垂直导水形成了有利的岩性条件。奥灰为强喀斯特含水层(图4-7),厚度大,富水性强,上距二1煤底板91.68~102.17m,一般95m左右。在浅部露头附近,奥灰与L2、L8、冲积层水力联系密切;在深部通过断裂构造补给上覆含水层。图4-6 太原统地层柱状图图4-7 焦作矿区中奥陶系灰岩分层柱状图奥灰水位变化与降水关系密切,丰水期水位保持在+85~+90m,枯水期+70~+75m。1988年7、8两个月集中降雨450mm后,奥灰水位大幅度上升,最大升幅16.47m,其他含水层与奥灰同步上升,但升幅均小于奥灰。L8水位升幅最大的地段在断层带附近。1988年雨季后,全局涌水量增加102.34m3/min,其中九里山矿增加21.67m3/min,(仅12021工作面增加9.88~15m3/min)。三、突水简述1.突水概述从建井至今发生1m3/min以上突水22次(表4-3)。其中5m3/min以上11次,10m3/min以上6次,30m3/min以上两次(表4-4),由表4-4可知矿井西部突水次数多,突水量大,因突水频繁,涌水量大,给矿井安全生产带来巨大的威胁;特别是矿井两翼涌水量达85m3/min以上,造成停产状态。表4-3 九里山矿井下突水点基本情况一览表续表表4-4 矿井东西部突水情况统计表2.突水原因分析(1)突水与采掘关系:按采掘对22次1m3/min以上突水统计出掘进、回采与突水的关系(表4-5)。表4-5 突水按采掘统计表由表4-5可知,突水主要发生在工作面回采中,占80.95%,掘进突水全是发生在底板岩巷中,工作面突水都发生在大顶来压过程中。突水时,虽有底鼓,但大多数底鼓幅度不大,且持续时间很短就发生突水。(2)突水与构造的关系:在22次1m3/min以上突水中,因断裂构造造成直接突水3次,在小背斜上6次。(3)突水与含水层的关系:在11次5m3/min以上突水中,除顶板水1次外,全为L8直接突水。突水后各含水层水位都有不同程度的变化(表4-6)。表4-6 主要突水点水位升降统计表由表4-6可知,L8突水后各含水层水位都有不同程度的下降,值得注意的是突水也引起L2、奥灰、冲积层水位下降,这可能是L8接受浅部混合水补给的依据。3.12031突水简况12031工作面位于12采区东翼。工作面东西走向长435m,南北倾斜宽92.5~130m,回采标高-78~-112.4m(图4-8)。煤层走向N5°~50°E,倾向SE,倾角7°~19°。二1煤层厚4.9~7.1m,平均厚6.4m。二1煤伪顶为炭质泥岩,厚0.2~1.5m,直接顶板为粉砂岩厚7.1m,老顶为砂岩厚12.3m,直接顶板为炭质泥岩和粉砂岩,厚12.3m。(1)突水简述:该工作面自1983年6月回采至今已发生4次突水,每次突水都造成工作面停产。图4-8 12031工作面平面图第一次是1983年7月6日突水。12031工作面1983年4月30日开采,由于伪顶较厚和生产系统不健全,推进速度比较慢。7月6日当工作面推进 26m 时,采空面积达2444m2,工作面在放顶期间,在上安全口处发生底板突水,最大水量27m3/min,稳定水量15~18m3/min。工作面停采后,一方面开掘泄水岩巷,建防水闸门一座,另一方面修复下运输巷和进行改造工作。1982年8月13日12皮带巷突水前,在12采区L8、L2和奥灰三者水位基本一致(+80m左右),突水后L8与L2奥灰水位明显“拉开”,12031工作面突水前,L8水位+78.05m(底板承受水压1.9MPa)L2+85.28m,奥灰+85.54m,水位差7m左右。突水后L8、L2、奥灰水位差更大,L8水位下降了8.36m,L2水位下降了0.88m,奥灰水位下降了0.94m(图4-9)。图4-9 12031突水点动态曲线(一)第二次是1987年9月25日突水。第一次突水后由原开切眼向外80m处另开切眼,于1987年8月完成工作面改造工作恢复生产。1987年9月25日工作面推进23m,采空面积2645m2时,在工作面下风道附近突水,最大水量6.77m3/min,稳定水量5.3m3/min,该工作面总水量由11.9m3/min增至17.23m3/min,12采区总水量已达65.1m3/min。突水后L8水位下降6.46m,L2下降0.46m,奥灰下降0.41m(图4-10)。图4-10 12031突水点动态曲线(二)第三次是1988年10月28日突水。第二次突水后因下风道流不出来水,重新掘进一条下风道距第二停采线18m,掘进开切眼使工作面斜长由130m缩小为90m。1988年9月开采,10月28日当工作面推进25m,采空面积2250m2时,在上安全口和下风道附近两处发生突水,最大涌水量9.76m3/min,稳定水量7.00m3/min,该工作面总水量由10m3/min增至16.9m3/min。此次突水正逢雨季,L8水位下降了6.77m,L2下降了0.64m,奥灰下降了0.8m(图4-11)。图4-11 12031突水点动态曲线(三)第四次是1993年3月30日突水。第三次突水后一二采区处于停产状态,但防治水工作仍在积极进行,1991年3月开始对12021和12041集中巷突水点进行地面注浆堵水工作,到1992年5月12021突水点已封堵结束。为扭转长期停产局面,采取综合治水与生产相结合,吸取外地经验,缩小工作面,减少矿压对底板破坏深度。1992年5月开始对12031工作面进行改造,重新掘进一条上风道,距第三停采线24m处掘进切眼,使工作面斜长由90m缩小为30m。1993年3月10日回采前打开12皮带突水点放水降低水压。3月25日工作面推进21.5m,采空面积731m2时,老塘出水0.05m3/min,3月29日8:00推进29m,采空面积1015m2时,水量增加至0.54m3/min,工作面停产两班。3月30日又开始回采,当推进31m,采空面积1085m2时,大顶突然来压,16:20水量增加,水色发黄,17:30水量达20.88m3/min,19:58上风道槽尾外3m处上帮出水7.02m3/min,总水量达27.9m3/min。3月31日1:30水量增至32.21m3/min,4月2日3:00水量增至39.05m3/min,4月3日4:50涌水量增至44.74m3/min,最大时47.51m3/min。突水点水量明显发生四次跳跃式上升。该工作面总水量稳定在41.72~47.35m3/min。突水后各含水层都有不同程度的下降,冲积层水位下降了644m,L8下降了20.68m,五灰下降了8.1m,L2下降了1.8m,奥灰下降了1.9m(图4-12)。图4-12 12031突水点动态曲线(四)12031突水后,12021集中巷和12041集中巷两突水点水量明显减少,分别减少2m3/min和1.2m3/min。其他突水点水量变化不明显。(2)突水原因分析:与水源和水压的关系密切。突水后在出水点附近施工两个L8孔,水位+23.75~+26.87m。在标高-100m以上涌水已达55m3/min以上,L8水位仍保持如此的高水位,单位水压涌水量达3.24m3/min,单位涌水量(m3/min)降深小于1m。说明L8受L2、奥灰和冲积层水补给量大,才会发生如此大的突水。一二采区位于L8强喀斯特裂隙富水带上,特别是12031工作面处于一个背斜构造上,北西向和北东向裂隙十分发育,底板岩石破碎,L8喀斯特裂隙更加发育,加上采动矿压影响极易引起突水。因此造成低水压突水量大。一二采区各突水点之间水量消长不明显,但突水后L2和奥灰水位都有不同程度的下降,说明补给通道各异,补给量大。(3)治理意见:从突水后水位水量变化可知,12031突水水源与L2、奥灰有明显关系,并且L8水位上升一次井下涌水量上升一个台阶,为防止水量增大,应切断L2和奥灰补给通道,减少矿井涌水量。因此应对突水点进行注浆堵水。一方面达到减少矿井涌水量,保证矿井安全生产,另一方面可切断补给通道为根治水害奠定基础。四、水化学资料的几点结论1990年西安地勘分院应用水化学及环境同位素研究方法,对焦作矿区不同层位地下水源进行采样、室内分析和测试工作。共采水样81个,其中冲积层15个,顶板砂岩11个,大原组石灰岩水样38个,奥灰17个。主要进行水质、微量元素和环境同位素(T.D)3项测定分析其结论如下:(1)焦作矿区各含水层(Q、C3灰岩、P砂岩、O2)都是由大气降水补给形成的,不存在古生水源问题。各含水层水中均有一定氚(T)含量被测出,说明本地区地下水30年以前的水体存在很少,以第四系冲积层水和砂岩水贮留时间较长。(2)L8水受冲积层下渗水影响形成混合水,矿区东部较西部有较大的混合比率。如九里山矿12皮带突水点冲积层水混入占31.50%,2#放水孔(L8水)占53.8%;演马庄矿东四半突水点,占84%。(3)第四系冲积层水矿区东西部水质化学特征有较大差异。从东向西,从北向南矿化度及硬度增大,说明与奥灰水补给有关。(4)奥灰水中冲积层水混入率,矿区东部九里山工人村至演马庄矿一带占23%~86%;西部除焦西三水厂、耐火二厂一带大于30%外,其他地区均小于20%。(5)九里山矿13011工作面顶板出水14.4m3/min,按其Na+降低、Ca2+,Mg2+增高,ph下降rNa/rCl比值等接近冲积层水质类型,说明冲积层水混入量较大。五、补给与通道九里山矿L8水主要接受奥灰L2和冲积层水补给,其补给途径主要是来自北部(浅部)和井田内隐伏构造。北部在煤层露头附近,奥灰、L2、L8含水层被第四系冲积层覆盖,通过基岩风化裂隙或构造破裂带使其互相沟通共同对L8补给。1.补给浅部补给,依据连通试验和突水后各含水层水位变化即可说明来自北部的补给是存在的。多元示踪剂连通试验资料(表4-7),即可说明浅部补给明显(图4-13)。①浅部冲积层水有明显补给,最大流速为155m/h。②浅部L8水与井下突水点联系密切,最大流速533m/h,而南部联系不明显。③浅部补给范围集中在13~15勘探线间。图4-13 九里山矿多元水力连通试验图表4-7 多元示踪连通试验成果表注:分子为时间(小时),分母为直线流速(m/h)。空格为未取样,“-”为未见到示踪剂。浅部含水层(O2~L2)补给问题,未做连通试验,但根据突水后各含水层水位变化(表4-6)和升压试验资料(见下述)均表明浅部12~15勘探线间,为一强径流带,补给明显。另外有下列地段值得注意:(1)12皮带巷突水点以西L8水位存在一个很陡的“陡坎”水力坡度733.3‰;(2)12031突水点(-93m)附近L8水位仍高达+27m(注1孔);(3)马坊泉断层南北两侧L8观侧孔水位差达20多m,突水后,断层两盘水位都有不同程度的下降(S>5m)。上述地段即可怀疑深部含水层补给的可能性。2.导水通道探讨通过突水资料分析奥灰、L2和冲积层水进入L8的途径有以下几种情况。(1)浅部冲积层水通过L8露头直接补给;L2、奥灰水一方面补给冲积层,另一方面通过基岩风化带或构造破裂带垂直向上补给L8。(2)马坊泉断层南北两盘L8水位差明显(达20m),北盘高、南盘低,而且突水后两盘L8水位下降都十分明显,说明L2奥灰补给L8明显。(3)根据一二采区1m3/min以上突水点平面分布和连通试验资料结合矿井地质构造特征,认为一二采区L8存在明显的两个径流带(或称喀斯特裂隙破碎带),大致呈近东西向自浅部向深部延展,预计深部富水性较差。(4)在井田内施工的L2奥灰孔,因封孔质量问题,造成人为的补给通道。如13-2孔,在施工中L2水曾喷出地面10多米,后因套管拔断而至今未处理。全井田内怀疑有12个L2和奥灰孔封孔质量有问题,其中奥灰3个孔,徐灰29个孔。若按平均每孔导水3~5m3/min,其补给量也是十分可观的。另外,根据现有突水点分析,L8水进入巷道只是构造裂隙和矿压作用产生的破坏裂隙互相沟通而引起突水的。六、涌水量预计(1)全矿涌水量:依据突水资料用比拟法和有限单元法计算标高-225m以上涌水量为184.64~187.5m3/min;标高-450m以上涌水量244.8m3/min。(2)浅部补给量:根据连通试验流速资料和有限单元法计算补给量33.86~54.7m3/min。(3)东部涌水量:西部关闭后成为直线补给边界时,东部涌水量将会大幅度增加,标高-225m以上将达到48.4~58.4m3/min;标高-450m时为94.4~104.4m3/min。如果西部一二采区补给水源及通道封堵后,东部涌水量将会大大减少,维持现状。
山东金岭矿业股份有限公司电话是多少?
山东金岭矿业股份有限公司联系方式:公司电话0533-3088888,公司邮箱[email protected],该公司在爱企查共有5条联系方式,其中有电话号码1条。公司介绍:山东金岭矿业股份有限公司是1996-09-28在山东省淄博市张店区成立的责任有限公司,注册地址位于淄博市张店区中埠镇。山东金岭矿业股份有限公司法定代表人戴汉强,注册资本59,534.023万(元),目前处于开业状态。通过爱企查查看山东金岭矿业股份有限公司更多经营信息和资讯。
山东金岭铁矿的评价
“铁鹰”牌铁精粉1980年获得国家银质奖章,1981年获得国家金质奖章,是至今铁矿石行业企业获得的唯一金质奖章;铜精矿粉、钴精矿粉也分别于1981年和1982年被评为山东省优质产品。1987年,JLKQB1-87《铁精矿》产品标准经冶金部评审为《铁精矿》综合水平为国际先进水平标准。1988年经国家质量奖审定委员会复审确定继续授予“铁鹰牌铁精矿”国家质量金奖。1997年获山东省“重合同守信用企业”,1999年获淄博市“铁鹰牌(铁、铜、钴)精矿粉”名牌产品和淄博市“产品质量信得过企业”称号,2000年又获国家级“质量、服务、信誉”AAA级品牌。金岭铁矿注重技术创新,积极开展科技攻关活动,坚持走科技兴矿之路。近年来,采选矿核心技术取得了一系列突破,其中,高分段采矿法、爆破振动的安全技术、尾矿高浓度排放研究与应用、扇形深孔“孔底起爆”等为代表的技术攻关项目达到国内先进水平,为金岭铁矿提升市场竞争力和安全生产能力提供了强大的技术支撑。
山东胶东金矿是否是上市公司?
亲亲,你好。上市公司是指所公开发行的股票经过国务院或者国务院授权的证券管理部门批准在证券交易所上市交易的股份有限公司。所谓非上市公司是指其股票没有上市和没有在证券交易所交易的股份有限公司。上市公司是股份有限公司的一种,这种公司到证券交易所上市交易,除了必须经过批准外,还必须符合一定的条件。【摘要】
山东胶东金矿是否是上市公司?【提问】
亲亲,你好。山东胶东金矿不是上市公司的哦。【回答】
亲亲,你好。上市公司是指所公开发行的股票经过国务院或者国务院授权的证券管理部门批准在证券交易所上市交易的股份有限公司。所谓非上市公司是指其股票没有上市和没有在证券交易所交易的股份有限公司。上市公司是股份有限公司的一种,这种公司到证券交易所上市交易,除了必须经过批准外,还必须符合一定的条件。【回答】