等腰三角形性质是什么
等腰三角形是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。本文中,我整理了等腰三角形的相关知识点,欢迎大家阅读。 等腰三角形性质 1、等腰三角形的两个底角度数相等(等边对等角)。 2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(等腰三角形三线合一)。 3、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4、等腰三角形底边上的垂直平分线到两条腰的距离相等。 5、等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6、等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7、一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。 8、等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。 9、等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。 等腰三角形定义 至少有两边相等的三角形叫做等腰三角形。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。 等腰三角形判定方法 定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。 判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。 除了以上两种基本方法以外,还有如下判定的方式: 1、在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。 2、在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。 3、在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。 显然,以上三条定理是“三线合一”的逆定理。 4、有两条角平分线(或中线,或高)相等的三角形是等腰三角形。 以上是我整理的关于等腰三角形的相关知识,希望对大家有所帮助。
等腰三角形的性质是什么
等腰三角形的性质有:等腰三角形的两个底角度数相等;等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合;等腰三角形底边上任意一点到两腰距离之和等于一腰上的高;等腰三角形底边上的垂直平分线到两条腰的距离相等。 扩展资料 等腰三角形的性质有:等腰三角形的两个底角度数相等;等腰三角形的.顶角平分线,底边上的中线,底边上的高相互重合;等腰三角形底边上任意一点到两腰距离之和等于一腰上的高;等腰三角形底边上的垂直平分线到两条腰的距离相等。
等腰三角形的性质是什么?
等腰三角形底边上的垂直平分线到两条腰的距离相等,等腰三角形的一腰上的高与底边的夹角等于顶角的一半。等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明),且等腰三角形腰长大于底边长的一半,而小于周长的一半。等腰三角形(isosceles triangle),是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。等腰三角形腰长大于底边长的一半,而小于周长的一半,等腰三角形底边上的垂直平分线到两条腰的距离相等,等腰三角形的一腰上的高与底边的夹角等于顶角的一半。等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。判定的方式定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。除了以上两种基本方法以外,还有如下判定的方式:在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。显然,以上三条定理是“三线合一”的逆定理。有两条角平分线(或中线,或高)相等的三角形是等腰三角形。