方差到底是有什么意义?
方差的意义:它反映了一组数据与其平均值的偏离程度。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。方差的意义 方差 方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。许多实际问题中,研究方差即偏离程度有着重要意义。 在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。 在概率论中,方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。方差的意义 方差、标准差、和协方差之间的联系与区别 1、方差和标准差都是对一组(一维)数据进行统计的,反映的是一维数组的离散程度;而协方差是对2维数据进行的,反映的是2组数据之间的相关性。 2、标准差和均值的量纲(单位)是一致的,在描述一个波动范围时标准差比方差更方便。方差可以看成是协方差的一种特殊情况,即2组数据完全相同。 3、协方差只表示线性相关的方向,取值正无穷到负无穷。 4、协方差只是说明了线性相关的方向,说不能说明线性相关的程度,若衡量相关程度,则使用相关系数。
方差指的是什么呢?
方差是衡量源数据和期望值相差的度量值。统计中的方差是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。找到一组数据的平均值,方差是这组数据整体偏离平均值的程度。特点:要是放在散点图上,点都聚在平均值旁边的话,方差就小。有公式,可以查百度,单个数据减去平均值的平方,然后加和后除以数据的个数。在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
方差与标准差
标准差(StandardDeviation),也称均方差(meansquareerror),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。方差是各个数据与平均数之差的平方的平均数。公式:1、方差s=[(x1-x)^2+(x2-x)^2+(xn-x)^2]/n(x为平均数)2、标准差=方差的算术平方根它们的意义:1、方差的意义在于反映了一组数据与其平均值的偏离程度;2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。
我们可以代入期望的数学表达形式。比如连续随机变量:
Var(X)=E[(X−μ)2]=∫+∞−∞(x−μ)2f(x)dx
方差概念背后的逻辑很简单。一个取值与期望值的“距离”用两者差的平方表示。该平方值表示取值与分布中心的偏差程度。平方的最小取值为0。当取值与期望值相同时,此时不离散,平方为0,即“距离”最小;当随机变量偏离期望值时,平方增大。由于取值是随机的,不同取值的概率不同,我们根据概率对该平方进行加权平均,也就获得整体的离散程度——方差。
方差的平方根称为标准差(standard deviation, 简写std)。我们常用σ表示标准差
σ=Var(X)−−−−−−√
标准差也表示分布的离散程度。
正态分布的方差
根据上面的定义,可以算出正态分布
E(X)=1σ2π−−√∫+∞−∞xe−(x−μ)2/2σ2dx
的方差为
Var(X)=σ2
正态分布的标准差正等于正态分布中的参数σ。这正是我们使用字母σ来表示标准差的原因!
标准差和方差的关系是什么?
标准差和方差的关系:统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根。标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大。一个较小的标准差,代表这些数值较接近平均值。
方差的定义是?
方差的定义是数据与平均数之差平方和的平均数。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。统计学意义当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。以上内容参考:百度百科-方差