数学初三知识点归纳有哪些?
数学初三知识点如下:1、含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。2、同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。3、使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。4、若已知函数图像与x轴的两个交点坐标,可设为交点式。5、一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
初三数学知识点归纳
想了解初中数学知识,想提高数学成绩的小伙伴,赶紧过来瞧一瞧吧。下面由我为你精心准备了“初三数学知识点归纳”,本文仅供参考,持续关注本站将可以持续获取更多的知识点! 初三数学知识点归纳 一、有理数。 1、大于0的数叫做正数。 2、在正数前面加上负号“-”的数叫做负数。 3、整数和分数统称为有理数。 4、人们通常用一条直线上的点表示数,这条直线叫做数轴。 5、在直线上任取一个点表示数0,这个点叫做原点。 6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。 7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。 8、正数大于0,0大于负数,正数大于负数。 9、两个负数,绝对值大的反而小。 10、有理数加法法则。 (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 (3)一个数同0相加,仍得这个数。 二、整式的加减。 1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。 2、单项式中的数字因数叫做这个单项式的系数。 3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。 4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。 5、多项式里次数最高项的次数,叫做这个多项式的次数。 6、把多项式中的同类项合并成一项,叫做合并同类项。 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。 7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。 8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。 三、一元一次方程。 1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。 2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。 3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。 4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。 6、把等式一边的某项变号后移到另一边,叫做移项。 7、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间。 盈亏问题:利润=售价-成本利率=利润÷成本×100%。 售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间。 本息和=本金+利息。 四、图形初步认识。 1、我们把实物中抽象的各种图形统称为几何图形。 2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。 3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。 4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 5、几何体简称为体。 6、包围着体的是面,面有平的面和曲的面两种。 7、面与面相交的地方形成线,线和线相交的地方是点。 8、点动成面,面动成线,线动成体。 9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。 简述为:两点确定一条直线(公理)。 10、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 拓展阅读:数学学习方法 1.求教与自学相结合。 在学习过程中,即要争取教师的指导和帮助,但是又不能处处依赖教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。 2.学习与思考相结合。 在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。 3.学用结合,勤于实践。 在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。 4.博观约取,由博返约。 课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。 5.既有模仿,又有创新。 模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。 6.及时复习增强记忆。 课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。 7.阅读理解。 目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。 8.提高听课质量要培养会听课,听懂课的习惯。 注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。 初中数学速记口诀 1.最简根式的条件。 最简根式三条件,号内不把分母含。 幂指(数)根指(数)要互质,幂指比根指小一点。 2.特殊点的坐标特征。 坐标平面点(x,y),横在前来纵在后。 (+,+),(-,+),(-,-)和(+,-),四个象限分前后。 x轴上y为0,x为0在y轴。 3.象限角的平分线。 象限角的平分线,坐标特征有特点。 一、三横纵都相等,二、四横纵确相反。 4.平行某轴的直线。 平行某轴的直线,点的坐标有讲究。 直线平行x轴,纵坐标相等横不同。 直线平行于y轴,点的横坐标仍照旧。 5.对称点的坐标。 对称点坐标要记牢,相反数位置莫混淆。 x轴对称y相反,y轴对称,x前面添负号。 原点对称最好记,横纵坐标变符号。 6.自变量的取值范围。 分式分母不为零,偶次根下负不行。 零次幂底数不为零,整式、奇次根全能行。 7.函数图象的移动规律。 左右平移在括号,上下平移在末稍。 左正右负须牢记,上正下负错不了。 8.一次函数的图象与性质的口诀。 一次函数是直线,图象经过三象限。 正比例函数更简单,经过原点一直线。 两个系数k与b,作用之大莫小看。 k是斜率定夹角,b与y轴来相见。 k为正来右上斜,x增减y增减。 k为负来左下展,变化规律正相反。 k的绝对值越大,线离横轴就越远。 9.二次函数的图象与性质的口诀。 二次函数抛物线,图象对称是关键。 开口、顶点和交点,它们确定图象现。 开口、大小由a断,c与y轴来相见。 b的符号较特别,符号与a相关联。 10.反比例函数的图象与性质的口诀。 反比例函数有特点,双曲线相背离得远。 k为正,图在一、三(象)限,k为负。 图在二、四(象)限;图在一、三函数减,两个分支分别减。 图在二、四正相反,两个分支分别增。 11.平行四边形的判定。 要证平行四边形,两个条件才能行。 一证对边都相等,或证对边都平行。 一组对边也可以,必须相等且平行。 对角线,是个宝,互相平分“跑不了”。 对角相等也有用,“两组对角”才能成。 12.二次函数抛物线。 选定需要三个点,a的正负开口判。 c的大小y轴看,△的符号最简便。 x轴上数交点,a、b同号轴左边。 抛物线平移a不变,顶点牵着图象转。 三种形式可变换,配方法作用最关键。
初三数学知识点有哪些?
初三数学知识点有:一、锐角三角形函数1、正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA=a/c;2、余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA=b/c;3、正切:把锐角A的对边与邻边的比叫做∠A的正切,记作tanA=a/b;4、余切:把锐角A的邻边与对边的比叫做∠A的余切,记作cotA=b/a。二、相似三角形两个对应角相等,对应边成比例的三角形叫做相似三角形。两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。三、圆和圆的位置关系若连心线长为d,两圆的半径分别为R,r,则:1、两圆外离<=>d>R+r;2、两圆外切<=>d=R+r;3、两圆相交<=>R-r<d<R+r(R>r)。四、二次函数的概念一般地,如果y=ax+bx+c(a,bc是常数,a≠0),那么y叫做x的二次函数。y=ax+bx+c(a,bc是常数,a≠0)叫做二次函数的一般式。五、中心对称的性质1、关于中心对称的两个图形是全等形。2、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。3、关于中心对称的两个图形,对应线段平行且相等。
初三数学知识点有哪些
初三重要数学知识点有哪些,考生怎么学?不清楚的小伙伴看过来,下面由我为你精心准备了“初三数学知识点有哪些”仅供参考,持续关注本站将可以持续获取更多的资讯! 初三数学知识点有哪些 第一章有理数 一、知识框架 二、知识概念 1.有理数: (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: ① ② 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题. 体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。 第二章整式的加减 一.知识框架 二.知识概念 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。 通过本章学习,应使学生达到以下学习目标: 1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。 2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。 3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。 4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。 在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。 第三章一元一次方程 一.知识框架 二.知识概念 1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0). 3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解). 4.列一元一次方程解应用题: (1)读题分析法:………… 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式: (1)行程问题: 距离=速度·时间 ; (2)工程问题: 工作量=工效·工时 ; (3)比率问题: 部分=全体·比率 ; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折· ,利润=售价-成本, ; (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h. 本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。 初中数学成绩不好怎么办 1、提高数学学习能力,有利于对成绩的提升,提高在数学课堂上的注意力,提高对于数学的兴趣,提高对于数字的学习能力以及对于数字的敏感度和记忆力,由此来提高数学成绩; 2、把一些数学公式和数学定理整理出来,方便查找和温习,背诵理解数学公式和定理,完善对于数学的理解,由此可以提高成绩; 3、整理曾经的错题,对于数学错题反复查看和理解,对于成绩提高也十分有作用; 4、树立正确的考试观,对于数学成绩要合理对待。 拓展阅读:初一数学差的补救方法 培养学生学习数学的兴趣 兴趣是推动学生学习的动力,学生如果能在学习数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学习。培养学生数学学习兴趣的途径很多,如让学生积极参与教学活动,并让其体验到成功的愉悦;创设一个适度的学习竞赛环境;发挥趣味数学的作用;提高教师自身的教学艺术等等。 教会学生学习 1、加强学法指导,培养良好学习习惯反复使用的方法将变成人们的习惯行为。什么是良好的学习习惯?我向学生做了如下具体解释,它包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 2、制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。 认真“听” 为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。 学习小技巧 1.学好数学要抓住三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。 2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。 3.一定要全面了解数学概念,不能以偏概全。 4.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。 5.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。 6.要主动提高综合分析问题的能力,借助文字阅读去分析理解。