贝叶斯

时间:2024-11-13 08:51:35编辑:优化君

贝叶斯定理计算怎么做?

贝叶斯定理 在引出贝叶斯定理之前,先学习几个定义:边缘概率(又称先验概率):某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中那些不需要的事件通过合并成它们的全概率,而消去它们(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率),这称为边缘化(marginalization),比如A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为P(A∩B)或者P(A,B)。条件概率(又称后验概率):事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”,。接着,考虑一个问题:P(A|B)是在B发生的情况下A发生的可能性。首先,事件B发生之前,我们对事件A的发生有一个基本的概率判断,称为A的先验概率,用P(A)表示;其次,事件B发生之后,我们对事件A的发生概率重新评估,称为A的后验概率,用P(A|B)表示;类似的,事件A发生之前,我们对事件B的发生有一个基本的概率判断,称为B的先验概率,用P(B)表示;同样,事件A发生之后,我们对事件B的发生概率重新评估,称为B的后验概率,用P(B|A)表示。贝叶斯定理便是基于下述贝叶斯公式:请点击输入图片描述P(A|B)=P(B|A)P(A)/P(B)上述公式的推导其实非常简单,就是从条件概率推出。根据条件概率的定义,在事件B发生的条件下事件A发生的概率是P(A|B)=P(A∩B)/P(B)同样地,在事件A发生的条件下事件B发生的概率P(B|A)=P(A∩B)/P(A)整理与合并上述两个方程式,便可以得到:P(A|B)P(B)=P(A∩B)=P(B|A)P(A)接着,上式两边同除以P(B),若P(B)是非零的,我们便可以得到贝叶斯定理的公式表达式:P(A|B)=P(B|A)*P(A)/P(B)笔者在看《从贝叶斯方法谈到贝叶斯网络》的时候,看到这里,其实已经晕晕的了。P(A|B) 和 P(B|A) 之类的经常让人混淆,@待字闺中的陈老师给出了理解的一个关键点,区分出规律和现象,就是将A看成“规律”,B看成“现象”,那么贝叶斯公式看成:例如, 病人有明显的症状, 贝叶斯公式可以用来计算诊断正确的概率, 鉴于观察. 简单的说,假设医生对一个人是否患有癌症,并且知道此人的年龄.如果癌症与年龄有关, 然后利用贝叶斯定理, 病人的年龄可以用来获得病人患癌症的更准确的概率。如果我们已经知道B已经发生并且被称为可能性的概率是A。P(A/B) A的概率 假设我们已经知道B已经发生。P(B) 被称为先验概率, P(B/A)是后验概率。

贝叶斯公式的意义

贝叶斯公式是一种用于计算条件概率的数学公式,通常用于统计学和人工智能领域的分类问题。它的核心思想是在已知某些事件的条件下,计算另一个事件发生的条件概率。贝叶斯公式的意义在于,它可以帮助我们在不确定性条件下对事件进行分类和概率估计。例如,在医学诊断方面,贝叶斯公式可以帮助医生根据一些症状判断病人是否患有某种疾病,并计算发生概率,从而对病人进行更准确的诊断和治疗。另外,贝叶斯公式也广泛应用于机器学习和人工智能领域,用于训练分类模型和预测概率。通过不断地更新先验概率和后验概率,可以逐渐提高模型的准确性和可靠性。总之,贝叶斯公式是一种重要的概率计算方法,具有广泛的应用场景和重要的实际意义。

怎么简单理解贝叶斯公式?

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1761)曾提出计算条件概率的公式用来解决如下一类问题:假设H,H…,H互斥且构成一个完全事件,已知它们的概率P(H),i=1,2,…,n,现观察到某事件A与H,H…,H相伴随机出现,且已知条件概率P(A|H),求P(H|A)。按贝叶斯定理进行投资决策的基本步骤是:1、列出在已知项目B条件下项目A的发生概率,即将P(A│B)转换为P(B│A);2、绘制树型图;3、求各状态结点的期望收益值,并将结果填入树型图;4、根据对树型图的分析,进行投资项目决策。

上一篇:巧克力工厂

下一篇:没有了