苏步青的十二个子女近况
苏步青的十二个子女中,有四位儿子:苏芝、苏汝、苏英、苏宗;八位女儿:苏芳、苏妃、苏枝、苏洁、苏贞、苏瑶、苏宝、苏若。苏芝是苏步青的长子,曾参加过马关战役,受到了赞誉。苏汝是苏步青的次子,曾任白马县令,因其廉洁奉公而受到赞誉。苏英是苏步青的季子,任太原知府,因为廉洁而受到赞誉。苏宗是苏步青的四子,曾任过长安太守,因为廉洁而受到赞誉。苏芳是苏步青的长女,曾被称为“芳芳”,因其孝顺、温柔、聪明而受到赞誉。苏妃是苏步青的次女,曾任汴河太守,因其忠贞而受到赞誉。苏枝是苏步青的三女,曾任河内太守,因其贞洁而受到赞誉。苏洁是苏步青的四女,曾任建康太守,因其孝顺而受到赞誉。苏贞是苏步青的五女,曾任江陵太守,因其孝顺而受到赞誉。苏瑶是苏步青的六女,曾任衡阳太守,因其贤淑而受到赞誉。苏宝是苏步青的七女,曾任桂阳太守,因其廉洁而受到赞誉。苏若是苏步青的八女,曾任湘阴太守,因其孝顺而受到赞誉。
苏步青资料50个字
苏步青(1902.9.23——2003.3.17),原名苏尚龙。浙江省平阳县人。著名数学家。共产党员。 苏步青1919年中学毕业后赴日本留学。1927年毕业于日本东北帝国大学数学系,后入该校研究生院,1931年毕业获理学博士学位。1931年3月应著名数学家陈建功之约,载着日本东北帝国大学的理学博士荣誉回国,受聘于国立浙江大学,先后任数学系副教授、教授、系主任、训导长和教务长。其间,与陈建功一起创立了“微分几何学派”。 1952年10月,因全国高校院系调整,来到复旦大学数学系任教授、系主任,后任复旦大学教务长、副校长和校长。 撰有《射影曲线概论》、《射影曲面概论》、《一般空间微分几何》等专著10部。 研究成果“船体放样项目”、“曲面法船体线型生产程序”分别荣获全国科学大会奖和国家科技进步二等奖。
自己总结吧。
苏步青简介 苏步青介绍
1、苏步青(1902年9月23日—2003年3月17日),浙江温州平阳人,祖籍福建省泉州市,中国科学院院士,中国著名的数学家、教育家,中国微分几何学派创始人,被誉为“东方国度上灿烂的数学明星”、“东方第一几何学家”、“数学之王”。
2、1927年毕业于日本东北帝国大学数学系,1931年获该校理学博士学位,1948年当选为中央研究院院士,1955年被选聘为中国科学院学部委员,1978年后任复旦大学校长、数学研究所所长,复旦大学名誉校长、教授。
3、从1927年起在国内外发表数学论文160余篇,出版了10多部专著,他创立了国际公认的浙江大学微分几何学学派;他对“K展空间”几何学和射影曲线的研究。
我的神奇符号的内容简介
本片是根据艾梅·本德(Aimee Bender)撰写的同名小说改编的,讲述了女主人公莫娜·格雷(Mona Gray)在年幼时因不明病症而饱受折磨的父亲带给她心灵上的创伤。对于平日喜好数学的她来说,数字与那些神奇的符号们成为了她生活中形影不离的伙伴,同时也变成了她化解困难与克服挫折的精神导师。长大后,在当上小镇上某小学三年级的数学教师之后,她努力尝试利用数学里蕴藏的力量教育学生们如何应对生活中的诸多小难题。配音名单导演 叶宝华沈贵才录音:张伟伟合成:刘大力字幕:杨硕配音演员:王明军张震刘芊含叶保华 张艾伍凤春 李慧敏制片:高丹监制:贾琪 李健片尾曲
苏步青的主要贡献!!!急急急急急急急急急急急!!
苏步青的研究方向主要是微分几何。1872年,德国数学家F.克莱因(Klein)提出了著名的“爱尔兰根计 划书”,在其中总结了当时几何学发展的情况,认为每一种几何学都联系一种变换群,每种几何学所研究的内容就是在这些变换群下的不变性质。除了欧氏空间运动群之外,最为人们所熟悉的有仿射变换群和射影变换群。因而,在19世纪末期和本世纪的最初三四十年中,仿射微分几何学和射影微分几何学都得到很迅速的发展。苏步青的大部分研究工作是属于这个方向的。此外,他还致力于一般空间微分几何学和计算几何学的研究。一共发表了156篇学术论文,并有专著和教材十多部。他的不少成果已被许多国家的数学家大量引用或作为重要的内容被写进他们的专著。
仿射微分几何
对仿射微分几何学的研究仿射群是比欧几里德群大一些的变换群,它能够保持“直线”和“平行性”,但没有线段长度和正交性等概念。苏步青在20年代后期,就致力于微分几何学这一分支的研究, 苏步青
当时在国际上处于热门。他的成就之一就是引进和决定了仿射铸曲面和仿射旋转曲面,他决定了所有仿射铸曲面并讨论了它们的性质,仿射旋转曲面是仿射铸曲面的一种特殊情形,它的特征是这种曲面的仿射法线必和一条定直线相交,因而它们是普通的旋转曲面非常自然的推广。 苏步青对仿射微分几何的另一极其美妙的发现是:他对一般的曲面,构作出一个仿射不变的4次(3阶)的代数锥面。在仿射的曲面理论中为人们注目的许多协变几何对象,包括2条主切曲线,3条达布(Dfarboux)切线,3条塞格雷(Segre)切线和仿射法线等等,都可以由这个锥面和它的3根尖点直线以美妙的方式体现出来,形成一个十分引人入胜的构图,这锥面被命名为苏锥面。苏步青的关于仿射微分几何学的成果,使他在30年代初就成为世界上著名的微分几何学家,后来据此写成了《仿射微分几何》(1981年出版)一书,评论者(美国《数学评论》 )认为,许多内容是“绝对杰出的”,还说,“这本漂亮的、现代化的书是任何学术图书馆所必备的”。
射影曲线论
对射影曲线论的研究射影群比仿射群更大,它能保持直线的概念,但“平行性”的概念已不复出现。在18、19世纪中,射影几何曾长期吸引数学家们的注意。例如,通过子群,它可以把欧氏几何和另外两类非欧几何学统一在同一理论体系中。由于既无度量,又无平行性,其微分几何的研究更为困难。即使是曲线论,虽经著名几何学家e.邦皮亚尼(Bompiani)、蟹谷乘养等人的多年研究,甚至在三维情况,结果也并不理想,更不用说高维情况了。苏步青发现平面曲线在其奇点的一些协变的性质,运用几何结构,以非常清楚的方法,定出了曲线在正常点的相应的射影标架(随曲线而变动的基本多面体),从而为射影曲线论奠定了完美的基础,得到国际上高度的重视。搞局部微分几何的学者,往往把奇点扔掉,而苏步青恰恰是从奇点发掘出隐藏着的特性,陈省身教授对此十分欣赏。在这项研究中,苏步青和他的学生也同时推进了代数曲线奇点的研究,有关的工作完成于三四十年代,抗战期间就已写成专著,但始终不得出版,到1954年,才作为他所写的第一本专著,由中国科学院出版。后来又出了英译本,《数学评论》的评阅者说:“现在射影几何被应用于数学物理和广义相对论中的各种问题,这本书已成为更重要了。”
射影曲面论
对射影曲面论的研究射影曲面论比曲线论要复杂得多,在30年代到40年代中,苏步青对它作了非常深入的,内容丰富的研究,在这里我们仅仅指出以下几项:对于一个曲面上一般的点p,S.李(Lie)得到一个协变的二次曲面,被命名为李二次曲面。作为李二次曲面的包络,除原曲面外,还有4张曲面,于是,对于每点P就有4个对应点,它们形成了点p的德穆林(DemouLin)变换。这时,所构成的空间四边形称为德穆林四边形。苏步青从这种四边形出发,构作出一个有重要性质的协变的二次曲面,后来这二次曲面被称为苏二次曲面。 他还研究了一种特殊的曲面,称为S曲面,它们的特点是,其上每点的苏二次曲面都相同,这类曲面有许多有趣的性质。他完全地决定了它们,并作出了分类。苏步青还研究了射影极小曲面,他的定义和g.汤姆森(ThomSen)用变分方法而引进的定义是相等价的。苏步青得到了有关射影极小曲面的戈尔多(godeaux)序列的“交扭定理”,显示出很优美的几何性质。苏步青又研究了一类周期为4的拉普拉斯(LapLace)序列,它和另一周期为4的拉普拉斯序列有共同的对角线汇,他把这种序列的决定归结为求解现在应用上很感兴趣的正弦-戈登(gordon)方程或双曲正弦-戈登方程,指出了这种序列的许多特性。这种研究在国际上很受重视,例如苏联的菲尼科夫学派就十分赞赏它。后来被g.博尔命名为苏链。
专著理论
苏步青的专著《射影曲面概论》全面总结了他在这一方面的成果。对高维空间共轭网理 苏步青
论的研究本世纪的大数学家e.嘉当(cartan)建立了外微分形式的理论,他和e.凯勒(KahLer)的关于一般外微分形式方程组解的存在性和自由度的研究,是现代数学的重要成就之一。嘉当本人以及后来的几何学家们如苏联菲尼科夫学派,都用此工具,得到许多微分几何方面的重要成果。在50年代中,苏步青也运用这一工具来研究高维射影空间中的共轭网理论,构作了高维射影空间中不少的具有优美几何性质的拉普拉斯序列,分别讨论了它们的存在性,自由度和有关的几何性质。他的专著《射影共轭网概论》(1977年出版)总结了这一方面的成果。对一般空间微分几何学的研究在19世纪,已经出现了黎曼几何学,它是以定义空间两无限邻近点的距离平方的二次微分形式为基础而建立起来的。20世纪以来,因受到广义相对论的刺激,黎曼几何发展很快,并产生了更一般的以曲线长度积分为基础的芬斯勒(FinSler)空间,以超曲面面积积分为基础的嘉当空间,以二阶微分方程组为基础的道路空间和K展空间等,通称一般空间。苏步青从30年代后期开始,对于一般空间的微分几何学的发展,作出了许多重要贡献。 对于嘉当几何学,他着重研究了极值离差理论,即研究能保持测地线的无穷小变形的方程,这是黎曼几何中十分重要的雅可比(Jacobi)方程的一种推广。K展空间是由完全可积的偏微分方程组所定义的,由J.道格拉斯(DougLaS)最早提出。苏步青得到了射影形式的可积条件,他又研究了仿射同构、射影同构及其推广,在讨论这种空间的几何结构时,他推广了嘉当有关平面公理的研究。1958年,包括上述结果的专著《一般空间微分几何学》由科学出版社出版。他在一般空间几何学的成果,获得了中国第一届自然科学奖。
船体放样
对计算几何的研究70年代初期,由于造船、汽车工业的需要和计算机在工业中的应用日趋广泛,在国际上形成了计算几何这一学科。苏步青出于对经济建设的关心,在逆境中仍然坚持科学研究。他了解到用旧方法作船体放样的困难后,毅然投入了这项密切联系工业生产的研究,把曲线论中的仿射不变量方法首创性地引入计算几何学科,使过去凭经验直观的一些方法有了可靠的理论基础,使得有广泛应用的3次参数曲线、贝泽(Bézier)曲线等等的研究都取得了很大的进展。这些工作的一部分,已经在中国造船工业中的船体放样、航空工业中的涡轮叶片空间造型以及有关的外型设计等方面获得了成功的应用,因而获得了两项国家科技进步奖。有关工作的理论部分,已写入《计算几何》(和刘鼎元合著)一书。该书英译本的出版在国际上引起了重视。 总之,苏步青在微分几何领域中做了大量的杰出的研究,在各个时期中处于国际的先进行列,并为几何学今后的发展,提供了宝贵的财富。由于数学研究的重大成就,他于1948年被选为当时在南京的中央研究院院士兼学术委员会常委。1955年被选为中国科学院学部委员(今称中国科学院院士)。 除了从事研究之外,他还做过大量的组织和交流工作。1935年,他是中国数学学会的发起人之一,并当选为理事。他被任命为我国最早的数学研究期刊《中国数学会学报》的总编辑。中华人民共和国成立后,他又致力于中国数学会的复会工作,曾担任中国数学会副理事长和上海数学会的理事长。他还积极参加过中国科学工作者协会杭州分会的活动,主持过浙江省科学团体联合会的筹备工作。后来他又担任过上海科学技术协会主席。他还曾主持过中国科学院数学研究所的筹备工作,任数学所筹备处主任直至正式建所时为止。在复旦大学,他除了创建数学研究所外,还创办了全国性的、高质量杂志《数学年刊》。此刊在国际上享有声誉。
苏步青的主要成就
他创建了中国微分几何学派,晚年创建开拓了计算几何新的研究方向。 他先后在仿射微分几何、射影微分几何、一般空间微分几何及射影共轭网理论等方面做出了杰出的贡献,创建了国际公认的中国微分几何学派;在70多岁高龄时,还结合解决船体数学放样的实际课题,创建和开始了计算几何的新研究方向。 苏步青的研究方向主要是微分几何。苏步青的大部分研究工作是属于仿射微分几何学和射影微分几何学方向的。此外,他还致力于一般空间微分几何学和计算几何学的研究。他创立了国际公认的浙江大学微分几何学学派。 苏步青从事微分几何、计算几何的研究和教学70余载,自1931年到1952年间,苏步青培养了近100名学生,在国内10多所著名高校中任正副系主任的就有25位,有5人被选为中国科学院院士,连解放后培养的3名院士,共有8名院士学生。在复旦数学研究所,苏步青更有,形成了三代四位院士共事的罕见可喜现象。 学生:数学教授张素诚,中国科学院数学研究所研究员白正国,杭州大学数学系教授吴祖基,郑州大学数学系教授熊全治,复旦大学教授、中国科学院院士李大潜、谷超豪院士、胡和生院士和李大潜院士。