被称为“上帝粒子”的希格斯玻色子,究竟是什么东西?
2012年7月,物理学领域有了一个重大的发现,物理学家们终于解开了困扰他们40多年的谜团。当每个人都兴奋地握手庆祝时,一个老人哭了,这个人就是彼得•希格斯。他对一个新的基本粒子的预测,即标准物理模型中对基本粒子家族的必要补充,最终被证明是正确的。希格斯玻色子的发现尤其令人期待,因为它被吹捧为“上帝粒子”。但是为什么它有这么一个耸人听闻的昵称呢?自然的力量如果说社交媒体教会了我们什么的话,那就是一个文化中的想法会以指数速度传播,但误解也是如此。不了解来龙去脉,就连喜剧也似乎变成悲剧。难道上帝粒子的发现最终证明了上帝确实存在?你在与物理学家交谈时说出 “上帝粒子”这个词时,如果他或她一脸苦相地反驳的话,不要感到惊讶。令物理学家懊恼的是,这个词现在已经不可避免地与粒子纠缠在一起了。对物理学家来说,这是一种不必要的夸张。彼得•希格斯更愿意把它称为物理学最想要的粒子。但是为什么我们如此迫切地想要找到它?标准模型中的基本粒子可以分为费米子和玻色子。费米子是构成物质的粒子,而玻色子则是传递物质之间作用力的粒子。在20世纪50年代末期,科学家证实物质和辐射可以同时表现出粒子和波的行为。这被称为波粒二象性。因此,每个粒子都与一个相应的场或粒子所“携带”的扰动相关联。例如,两个磁体之间的排斥和吸引力是电磁力,但你可能不知道这个磁场是由光子携带的,它的粒子模拟物。虽然我们可以从磁体的运动中探测到磁场,但对携带它的粒子却不能这样说。这是因为力量粒子或玻色子是无形的或虚拟的。标准模型描述了自然界四种基本力中的三种。按照力量顺序,他们可以列为,结合原子核并由胶子携带的强场,最常见的,由电子承载的电磁场,和致使β衰变及核聚变反应,由W和Z粒子携带的弱场。一个叫做引力子的假想粒子被认为携带着引力,这是第四种基本力,但是每一次尝试将其合并到模型中并完成这个谜题时,结果都失败了。对于物理学家来说,无法将一切都包含在一个整体中一直是挫败感的来源。追求对称物理学家渴望确定性,他们希望能够有预测的能力,并见证事件慢慢明朗。标准模型允许我们描述原子核千分之一大小的粒子的行为,但他们仍然不满意。在这些力量中,存在着明显的不对称。电磁学的范围是无限的,但弱相互作用力的范围不是。物理学家认为存在一种对称性,有一种比所有四种基本力更基础的力。他们认为这四种力量是从单一河流中分裂出来的一个三角洲的溪流。因此,所有不同的力量都是一种力量的表现,它是大爆炸后出现的第一个力量。虽然引力目前不予考虑,但我们希望能达到对称性,或者说把剩下的三种力合并成一个我们称之为大统一力(GUF)的力。然而,这样的对称性只能在巨大的能量或大统一能量中见证,大统一能量是宇宙大爆炸后产生的一种能量。为了探测GUF,我们需要一个像太阳系一样大的粒子加速器!所以,物理学家认为他们至少能做的就是把电磁力和弱力结合成“电弱力”。他们希望,在随后的几年里开发出来的粒子加速器能够强大到足以探测到“电弱力”。弱力没有像电磁力那样到处分散的原因是,弱力粒子与光子不同,它们很大。因为它们的质量使它们停滞不前,所以不会到处窜动。在60年代末,史蒂文•温伯格成功地将这两种理论结合起来,创造了电弱理论。他首次预测了W、Z粒子,并计算了它们的质量。16年后,欧洲原子核研究组织(CERN)成功地探测到它们并发现它们的质量大约是一个质子的100倍,这与温伯格最初预测的差距不太大。弱力粒子的发现是历史性的,但我们的研究还没有完成。只有能够解释是什么导致了不对称,是什么导致了大量的力粒子才能建立一个完整的电弱理论框架。讨厌的粒子彼得•希格斯提出了一个新的基本力场的存在,这是一种相互作用,它会在弱场粒子中注入质量。无处不在的力场最终被称为希格斯场,与它相关的粒子被称为希格斯玻色子。希格斯认为W和Z粒子会干扰这个场并产生质量,而光子会以不同的方式快速地穿过,不会产生任何质量。令人惊讶的是,希格斯场不仅导致产生力粒子的质量,还会产生物质粒子。虽然物质扰乱希格斯场的机制不同,但这意味着如果没有希格斯场,就没有质量,没有质量,质子就没有对抗运动,不会停止,聚集和形成物质,而是以光速穿过空间。没有它,我们就不会存在。所以,希格斯玻色子的发现确实非常重要。然而,如果没有证据,一个理论就是推测。希格斯玻色子是出了名的难以捉摸,探测希格斯场所需的能量比一般加速器所能提供的能量大得多。此外,更大的能量会带来更大的风险和成本。没有人能保证更大的加速器就会探测到它。如果所有的努力,高昂的费用和不可挽回的时间最终发现都毫无价值,那该怎么办?二十年过去了,物理学家们仍然一无所知。1993年,美国物理学家Leon Lederman和Dick Teresi写了一篇文章《上帝粒子:如果宇宙是答案,那问题是什么?》。有趣的是,最初的标题是《这令人讨厌的粒子》(The Goddamn Particle),反映了物理学家在近20年里无法找到它的巨大挫败感。然而,出版商不同意,之后作者把单词删减成“上帝”。结果这个名字就粘在上面了。就像一个有责任心的寄生虫,似乎不会很快离开。误释被曲解了,阴谋也随之而来。2005年大型强子对撞机(LHC)开始开发时,扑朔迷离的阴谋正四处流传。一些人认为物理学家打开了通往地狱的大门。物理学家通过研究在高速粒子碰撞中分散的碎片,发现了新的、更小的基本粒子。这类似于通过检查电视机从建筑物顶部扔下来摔成的碎片来研究其内部结构。2012年,人类有史以来建造的最强大的粒子加速器LHC,以接近光速的速度碰撞质子,最终发现了长久以来寻找的希格斯玻色子,原来它隐藏在内部。希格斯场的发现仅仅是个开始。我们推测,这个场的许多“版本”最终将不仅仅是对称建立,而是所谓的超对称,它是一个扩展的标准模型,有望填补剩余的空白。这也包括暗物质的构成,暗物质目前似乎比希格斯场更难以理解。不管是不是上帝粒子,这个发现是开创性的,也许是我们短暂历史上最重要的发现之一。我们的祖先带着棍子出发,但最重要的是,带着好奇心,沿着潮湿的砾石,追踪水斑找到溪流,爬过一个个悬崖,跟着溪流发现池塘,我们现在已经艰难地追踪到这四大河流。在这段时间里,我们已经锻造了一些工具,正如英国科幻作家Arthur Clarke所说,它们与魔法别无二致。很快,我们就会沿着河流到达最终的“大河”,把我们的木棍固定在它旁边的地面上,回顾我们史诗般的朝圣之旅。然后我们就可以停止好奇“如何做”,而开始思考“为什么”。
希格斯机制详细资料大全
在标准模型里, 希格斯机制 (英语: Higgs mechani *** )是一种生成质量的机制,能够使基本粒子获得质量。为什么费米子、W玻色子、Z玻色子具有质量,而光子、胶子的质量为零?希格斯机制可以解释这问题。希格斯机制套用自发对称性破缺来赋予规范玻色子质量。在所有可以赋予规范玻色子质量,而同时又遵守规范理论的可能机制中,这是最简单的机制。根据希格斯机制,希格斯场遍布于宇宙,有些基本粒子因为与希格斯场之间相互作用而获得质量。 基本介绍 中文名 :希格斯机制 外文名 :Higgs Mechani *** 领域 :量子力学 简介,历史,U(1)希格斯机制,概述,自发对称性破缺,SU(2)×U(1)希格斯机制,标准模型,参阅, 简介 在标准模型里, 希格斯机制 (英语: Higgs mechani *** )是一种生成质量的机制,能够使基本粒子获得质量。为什么费米子、W玻色子、Z玻色子具有质量,而光子、胶子的质量为零?希格斯机制可以解释这问题。希格斯机制套用自发对称性破缺来赋予规范玻色子质量。在所有可以赋予规范玻色子质量,而同时又遵守规范理论的可能机制中,这是最简单的机制。根据希格斯机制,希格斯场遍布于宇宙,有些基本粒子因为与希格斯场之间相互作用而获得质量。 更仔细地解释,在规范场论里,为了满足定域规范不变性,必须设定规范玻色子的质量为零。由于希格斯场的真空期望值不等于零,造成自发对称性破缺,因此规范玻色子会获得质量,同时生成一种零质量玻色子,称为戈德斯通玻色子,而希格斯玻色子则是伴随着希格斯场的粒子,是希格斯场的振动。通过选择适当的规范,戈德斯通玻色子会被抵销,只存留带质量希格斯玻色子与带质量规范矢量场。 费米子也是因为与希格斯场相互作用而获得质量,但它们获得质量的方式不同于W玻色子、Z玻色子的方式。在规范场论里,为了满足定域规范不变性,必须设定费米子的质量为零。通过汤川耦合,费米子也可以因为自发对称性破缺而获得质量。 本条目的数学表述内容需要读者了解一些量子场论的知识。所有方程都遵守爱因斯坦求契约定。按照粒子物理学惯例,采用CGS单位制为物理量的单位,并且设定光速与约化普朗克常数的数值为 。 历史 1964年,分别有三组研究小组几乎同时地独立研究出希格斯机制,其中,一组为弗朗索瓦·恩格勒和罗伯特·布绕特,另一组为彼得·希格斯,第三组为杰拉德·古拉尼、卡尔·哈庚和汤姆·基博尔。古拉尼于1965年、希格斯于1966年又各自更进一步发表论文探讨这模型的性质。这些论文表明,假若将规范不变性理论与自发对称性破缺的概念以某种特别方式连结在一起,则规范玻色子必然会获得质量。1967年,史蒂文·温伯格与阿卜杜勒·萨拉姆首先套用希格斯机制来打破电弱对称性,并且表述希格斯机制怎样能够并入稍后成为标准模型一部分的谢尔登·格拉肖的电弱理论。 六位物理学者分别发表的三篇论文,在《物理评论快报》50周年庆祝文献里被公认为里程碑论文。2010年,他们又荣获理论粒子物理学樱井奖。 因为“次原子粒子质量的生成机制理论,促进了人类对这方面的理解,并且最近由欧洲核子研究组织属下大型强子对撞机的超环面仪器及紧凑μ子线圈探测器发现的基本粒子证实”,恩格勒、希格斯荣获2013年诺贝尔物理学奖。 U(1)希格斯机制 概述 U(1)希格斯机制是一种很简单的赋予质量的机制,适用于U(1)规范场论。U(1)规范场论的规范变换涉及到相位变换: ;其中, 是复值希格斯场, 是相位。这种变换是U(1)变换,所涉及的是阿贝尔群,因此是一种“阿贝尔希格斯机制”。 假定遍布于宇宙的希格斯场是由两个实函式 、 组成的复值标量场 : 其中, 是四维坐标。 对于这自旋为零、质量为 、势能为 的标量场,克莱因-戈尔登拉格朗日量为 暂时假设质量项目不存在,则克莱因-戈尔登拉格朗日量的形式变为 其中, 是四维导数运算元。 这是个波动方程,可以用来描述电磁波处于位势的物理行为。从这方程,似乎找不到任何质量的蛛丝马迹,但是假若将势能泰勒展开于 : 注意到 、 、 都是常数。在这展开式里,可以隐约地观察到质量项目的形式 。 自发对称性破缺 量子力学的真空与一般认知的真空不同。在量子力学里,真空并不是全无一物的空间,虚粒子会持续地随机生成或湮灭于空间的任意位置,这会造成奥妙的量子效应。将这些量子效应纳入考量之后,空间的最低能量态,是在所有能量态之中,能量最低的能量态,又称为基态或“真空态”。最低能量态的空间才是量子力学的真空。 构想某种对称群变换,只能将最低能量态变换为自己,则称最低能量态对于这种变换具有“不变性”,即最低能量态具有这种对称性。尽管一个物理系统的拉格朗日量对于某种对称群变换具有不变性,并不意味着它的最低能量态对于这种对称群变换也具有不变性。假若拉格朗日量与最低能量态都具有同样的不变性,则称这物理系统对于这种变换具有“外显的对称性”;假若只有拉格朗日量具有不变性,而最低能量态不具有不变性,则称这物理系统的对称性被自发打破,或者称这物理系统的对称性被隐藏,这现象称为“自发对称性破缺”。 SU(2)×U(1)希格斯机制 在标准模型里,SU(2)×U(1)希格斯机制是最简单的一种赋予质量的机制,适用于弱电相互作用的SU(2)×U(1)规范场论。采用这种机制的标准模型称为最小标准模型(minimal standard model)。在这模型里,希格斯场是复值二重态: 其中, 都是实函式。 这种希格斯场是由两个复值标量场,或四个实值标量场组成,其中,两个带有电荷,两个是中性。在这模型里,还有四个零质量规范玻色子,都是横场,如同光子一样,具有两个自由度。总合起来,一共有十二个自由度。自发对称性破缺之后,一共有三个规范玻色子会获得质量、同时各自添加一个纵场,总共有九个自由度,另外还有一个具有两个自由度的零质量规范玻色子,剩下的一个自由度是带质量的希格斯玻色子。三个带质量规范玻色子分别是W、W和Z玻色子。零质量规范玻色子是光子。 标准模型 在标准模型里,假若温度足够高,物理系统的电弱对称性没有被打破,则所有基本粒子都不具有质量。当温度降到低于临界温度,希格斯场会变得不稳定,会跃迁至最低能量态,即量子力学的真空,整个物理系统的连续对称性因此被自发打破,W玻色子、Z玻色子、费米子也因此会获得质量。 参阅 希格斯玻色子的实验探索 探寻希格斯玻色子时间轴
希格斯波色子,为什么被称为“上帝粒子”?
因为希格斯波色子与空间中物体的质量形成有关。希格斯波色子又被称之为希格斯离子,是质量这一维度的组成元素,有了质量离子才会结合为原子,原子才会结合成为分子,分子进一步组成了物体。所以说希格斯离子被认为是世界的组成元素,这也就是为什么被称为上帝离子的原因了。在上世界六十年代,英国的物理学家希格斯开始研究物质质量的根本,质量其实就是一个物体获得加速度的难度,物质的重量越大,获得加速度的难度越大,以此来定义物质的重量。这是希格斯在以此散步中偶然突发奇想的想法,认为空间就像水,物质在水中运动会受到阻力,需要突破这种阻碍就需要有所付出,以此获得的加速度就是我们所说的质量。后来欧洲的科研机构CERN在日内瓦建造了一座大型强子对撞机,科学家们尝试将离子加速到光速,希望通过这种方法印证希格斯波色子的存在,终于在2013年试验成功,初步确认了希格斯波色子是存在的,并且定名为希格斯玻色子 ,之后希格斯本人因此获得了当年的诺贝尔奖。希格斯波色子的发现是人类物理学上的一个重大突破,是里程碑式的重大事件,证明了很多之前的理论,例如真空不空,和空间并不是一个虚无的东西,而是拥有自己的特性的,希格斯波色子被验证广泛的存在于空间之中,给所有的物质施加质量以保证他们的重力加速度,让人们认识到即使是在绝对的真空中也可以对物质进行实在的影响。另外最重要的是希格斯波色子可以打破对称性,这种变相性会造成若电场破坏,这将是未来人们下一步的研究方向。
死亡搁浅希格斯怎么打?
希格斯是死亡搁浅的对手之一。他是人类,这意味着与他战斗将有所不同。我们故事开始就看到了他。然而,我们面对这个敌人在第9章,64号订单中。您需要做的第一件事是捡起在地上的货物,然后找到对手。您的任务是将货物扔给他。货物散落在各处,但最好总是随身携带。这将使您更轻松。如果遇到敌人,就向他扔货物。然后靠近希格斯,用拳头打他。希格斯可以传送。他不仅利用传送躲避你的攻击,而且还从后面攻击你。要打败你的对手,请用拳头攻击他。这将减少他逃脱的机会。再次提货并扔给希格斯,开始下一阶段。最后一个阶段与游戏中先前的战斗明显不同。你必须不断打击敌人并防御他的打击。你的动作受到人物耐力的限制。给他一些时间休息,这样他就可以造成更大的伤害。详细介绍:《死亡搁浅》是一款由Kojima Productions开发,索尼互动娱乐于2019年11月8日发售的动作游戏。游戏讲述了主人公山姆必须勇敢直面因死亡搁浅而面目全非的世界,团结现存社会,拯救异空间人类的故事。2021年1月1日,获得PC Gamer2020年度游戏奖。该游戏将于2022年8月23日正式登陆微软PC Game Pass订阅服务。2022年12月,游戏公布续作《死亡搁浅2》。
死亡搁浅怎么打希格斯
希格斯是死亡搁浅的对手之一。他是人类,这意味着与他战斗将有所不同。我们故事开始就看到了他。然而,我们面对这个敌人在第9章,64号订单中。您需要做的第一件事是捡起在地上的货物,然后找到对手。您的任务是将货物扔给他。货物散落在各处,但最好总是随身携带。这将使您更轻松。如果遇到敌人,就向他扔货物。然后靠近希格斯,用拳头打他。希格斯可以传送。他不仅利用传送躲避你的攻击,而且还从后面攻击你。要打败你的对手,请用拳头攻击他。这将减少他逃脱的机会。再次提货并扔给希格斯,开始下一阶段。最后一个阶段与游戏中先前的战斗明显不同。你必须不断打击敌人并防御他的打击。你的动作受到人物耐力的限制。给他一些时间休息,这样他就可以造成更大的伤害。详细介绍:《死亡搁浅》是一款由Kojima Productions开发,索尼互动娱乐于2019年11月8日发售的动作游戏。游戏讲述了主人公山姆必须勇敢直面因死亡搁浅而面目全非的世界,团结现存社会,拯救异空间人类的故事。2021年1月1日,获得PC Gamer2020年度游戏奖。该游戏将于2022年8月23日正式登陆微软PC Game Pass订阅服务。2022年12月,游戏公布续作《死亡搁浅2》。