数学八年级上册

时间:2024-11-23 12:57:08编辑:优化君

八年级数学上知识点归纳

  有智慧的人未必先天就很聪明,反而更多的是通过后天毕生的努力。只要勤奋努力学习八年级数学知识点,希望就在面前。我整理了关于八年级数学上知识点归纳,希望对大家有帮助!   八年级数学上知识点归纳第11-12章   第十一章 全等三角形   知识概念   1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。   2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。   3.三角形全等的判定公理及推论有:   (1)“边角边”简称“SAS”   (2)“角边角”简称“ASA”   (3)“边边边”简称“SSS”   (4)“角角边”简称“AAS”   (5)斜边和直角边相等的两直角三角形(HL)。   4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。   5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).   在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。   第十二章 轴对称   知识概念   1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。   2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。   (2)角平分线上的点到角两边距离相等。   (3)线段垂直平分线上的任意一点到线段两个端点的距离相等。   (4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。   (5)轴对称图形上对应线段相等、对应角相等。   3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)   4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。   5.等腰三角形的判定:等角对等边。   6.等边三角形角的特点:三个内角相等,等于60°,   7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。   有一个角是60°的等腰三角形是等边三角形   有两个角是60°的三角形是等边三角形。   8.直角三角形中,30°角所对的直角边等于斜边的一半。   9.直角三角形斜边上的中线等于斜边的一半。   本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。   八年级数学上知识点归纳第13-14章   第十三章 实数   1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。   2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。   3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。   4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。   5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0   实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。   第十四章 一次函数   知识概念   1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。   2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。   3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。   4.已知两点坐标求函数解析式:待定系数法   一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。   八年级数学上知识点归纳第15章   第十五章 整式的乘除与分解因式   1.同底数幂的乘法法则: (m,n都是正数)   2.. 幂的乘方法则:(m,n都是正数)   3. 整式的乘法   (1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。   (2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。   (3).多项式与多项式相乘   多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。   4.平方差公式:   5.完全平方公式:   6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).   在应用时需要注意以下几点:   ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.   ②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.   ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的.   ④运算要注意运算顺序.   7.整式的除法   单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;   多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.   8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.   分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法   分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;   (2)再看能否使用公式法;   (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;   (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;   (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.   整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

数学八年级上册知识点归纳

  想要了解初二数学知识点的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“数学八年级上册知识点归纳”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!   数学八年级上册知识点归纳   一次函数   (1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数。   (2)正比例函数图像特征:一些过原点的直线。   (3)图像性质:   ①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小。   (4)求正比例函数的解析式:已知一个非原点即可。   (5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)。   (6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数。   (7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)。   (8)一次函数图像特征:一些直线。   (9)性质:   ①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)   ②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;   ③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;   ④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);   ⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);   (10)求一次函数的解析式:即要求k与b的值;   (11)画一次函数的图像:已知两点。   用函数观点看方程(组)与不等式   (1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;   (2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;   (3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;   (4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标。   拓展阅读:初二数学复习方法有哪些   一、克服心理疲劳   第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;   第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的`。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;   第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。   二、战胜高原现象   复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。   三、重视复习“错误”   如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。   四、把握心理特点搞好考前复习   实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。   1、课本不容忽视   对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。   2、错题本   相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。

上一篇:冥河世界2003

下一篇:没有了