黑洞图片

时间:2024-11-30 01:42:40编辑:优化君

关于第一张黑洞照片的5个事实

为什么黑洞的照片看上去如此模糊?黑洞是否真的看上去像一个倾向一边的甜甜圈呢?为什么黑洞的第一张照片如此重要呢?Sabrina Stierwalt博士将会解答这一具有里程碑意义的科学成就背后的重要性。 4月10日我们见证了 历史 上第一张黑洞的照片。无论你是上网浏览,阅读报纸,还是打开电视,都可以看到一个发着橙色光芒的甜甜圈。两年前,当黑洞观测刚起步时,我们讨论了何种望远镜或者说一组遍布全球的望远镜,能够得到这样的一幅画面。 如今,当这张照片终于来到我们面前,我们该如何解读它?我们究竟在寻找些什么?它是否就是我们所期待的?接下去该怎么做? 那就让我们来一起了解下第一张黑洞照片背后的5个事实: 1. 为什么说这是第一张我们拍得的黑洞照片? 超级黑洞喜欢潜伏在巨大的星系中心,比如我们的星河系,但是尽管这么说,直到4月10日,我们都没有真正见到过一个黑洞。此前,天文学家只能通过围绕黑洞的星体的运动或是被排放的高能射线被黑洞吞噬导致其升温,来推断黑洞的存在。当然,问题是黑洞太过紧实,它的质量非常大以至于光线(没有质量,高速运动的光线)都无法逃脱。正如它的定义,黑洞是黑色的。 多亏了无线电波的使用和一个名叫干涉法的观测技巧,人类终于第一次见到了黑洞的真面目。在一个干涉仪中,多个望远镜被放置在一起来模拟一个大望远镜。比起只用其本身,这能够观测到更多的细节。只有世界级的射电望远镜,分析数据所用的算法发明,当然还有一个勇于尝试的团队,才能进行这样的观测。 2. 为什么黑洞看上去像一个倾向一边的甜甜圈? 照片中心的黑色斑块包含了黑洞本身的视界,任何物体和光线的不归点和黑洞投射在周围物体上的阴影。这个阴影则揭示了贴近黑洞视界的光线向内弯曲并最终消失于奇点的地方,所以照片上的黑洞看上去就是一个黑色的洞。 那么那些刚好擦过黑洞视界并且没有被其巨大密度吸引的光线呢?它们继续前行,被送回宇宙中去。但是,高密度物体,例如黑洞,周围的空间会被弯曲,强大的重力导致光的传播路线不再是直线,而是变成围绕黑洞的曲线。如此一来,黑洞周围的光线便形成一个名叫光子层的发光圆壳,在照片上看如同一个橙色的光环。 对于站在地球上的观测者而言, 光子层的有些光子在围绕黑洞时朝向我们运动,有些则背向我们运动。由于多普勒效应,朝向我们运动的光看上去变亮了。(这就如同救护车向我们驶来或是离去时,警报声的音调会有所不同。) 拍摄黑洞照片的团队的项目总监,哈佛大学的科学家Shep Doeleman说:“自然就是让我们看到那些我们曾认为看不见的东西。”令人激动的是,爱因斯坦的广义相对论曾预测到这个倾向一边的甜甜圈造型。 3. 这个黑洞有多大? 这个相当于65亿颗太阳重的超级黑洞坐落于椭圆星系M87的中心地带。M87星系是室女座星系团中最重的星系,并且包含了几万亿颗星体。对比来看,银河系只包括了几千亿颗星体。 多亏了对轨道的研究,天文学家能够计算出黑洞的质量,但是鉴于我们不知道黑洞旋转的速度或是它对于我们的视图的精确方向,其体积难以估算。我们预测,照片中心黑色的模糊景象能够完全容纳整个太阳系,并且中部黑暗的范围大于120倍日地距离。 4. 为什么照片如此模糊? 自从照片公布以来,我不止一次看到网友调侃天文学家们在看到如此模糊的一张照片时会有多么兴奋。诚然,M87的黑洞非常大,但是体积大不代表一定能够获得一张清晰的影像。还需要近距离。作为图像算法的主要开发人员,美国加州理工学院的教授Katie Bouman描述了为了获得一张这个黑洞的照片有多艰难,但却又令人钦佩。她说:“这就如同你拍摄月球上的一个桔子。” 5. 为什么我们不拍摄银河系的黑洞? 如果距离是关键,那为什么研究团队不选取我们自己星系中的超级黑洞呢?答案是,他们确实曾拍摄过人马座A*超级黑洞,也曾打算将数据公开。但是,我们还要保证照片的质量,因为一旦选择了近距离的人马座A*超级黑洞,那就舍弃了M87黑洞的巨大体积。我们的黑洞邻居只有400万颗太阳的重量,所以尽管它比M87离我们的距离近2000倍,它却也小了近2000倍。 参考资料 1.Wikipedia百科全书 2.天文学名词 3. 忙碌的北门- quickanddirtytips 转载还请取得授权,并注意保持完整性和注明出处

9张最佳黑洞照片,带你更深入的了解黑洞

ALMA & APEX对EHT(事件视界望远镜(英语:Event Horizon Telescope, EHT)是一个以观测星系中心超大质量黑洞为主要目标的计划。)的重要贡献。

这张图片展示了ALMA 和APEX对EHT 的重要贡献,左边图片显示的是使用 事件视界望远镜(包括ALMA和APEX)全阵列重建的黑洞图像,右图显示的是没有ALMA和APEX 数据的重建情况。这两张图片的差异清楚地表明了ALNA和APEX在观测中所起的重要作用。



这幅艺术家的印象描绘了黑洞附近光子的路径,视界对光线的引力弯曲和捕获使得视界望远镜得以捕获阴影。



一个黑洞吸积过程的模拟图像,在图象中间的视界,可以看到阴影周围旋转着的吸积盘。



梅西耶87(M87)是一个巨大的椭圆星系,距离地球约5500万光年,位于室女座。它于1781年被查尔斯·梅西耶发现,但直到20世纪才被确定为一个星系。它的质量是我们银河系的两倍,恒星的数量是银河系的十倍,是宇宙中最大的星系之一。除了它的原始尺寸,M87有一些非常独特的特点。例如,它包含的球状星团数量异常之多:虽然我们的银河系包含200个以下的球状星团,但M87大约有12000个,一些科学家认为这是它从其较小的"邻居"那里收集来的。

和其他大型星系一样,M87的中心也有一个超大质量黑洞。星系中心黑洞的质量与整个星系的质量有关,所以M87黑洞是已知质量最大的黑洞之一也就不足为奇了。黑洞也可以解释星系最具能量的特征之一:以接近光速喷射出的相对论性物质射流。

黑洞是视界望远镜所观测到的改变范式的物体。EHT(事件视界望远镜)选择该物体作为观测目标有两个原因。其一是,由于更大质量黑洞的直径也更大,M87中心的黑洞呈现出一个异常大的目标——这意味着它比附近的小黑洞更容易成像。而,另一个原因,从我们的星球上看,M87似乎相当接近天球赤道,这使得它在北半球和南半球的大部分地区都可见,这极大地增加了EHT望远镜的数量,从而提高了最终图像的分辨率。

这张照片是FORS2在ESO的超大型望远镜上拍摄的,作为宇宙CG(Cosmic Gems)计划--一个扩展计划的一部分(使用ESO望远镜拍摄视觉上有吸引力的物体,用于教育和公共推广)。该项目利用了无法用于科学观测的望远镜时间,拍摄了夜空中一些最引人注目的物体图像。如果收集到的数据对未来的科学研究有用,这些观测结果将被保存下来,并通过ESO科学档案提供给天文学家。



这幅艺术家的印象描绘了位于巨大的椭圆星系M87中心的黑洞。这个黑洞被选为视界望远镜进行范式转换观测的对象。图中展示了黑洞周围的过热物质,以及M87黑洞发射的相对论射流。



这张图片描绘了一个被吸积盘包围的快速旋转的超大质量黑洞。这个旋转物质的薄圆盘由类太阳恒星的残余物组成,这些残余物被黑洞的潮汐力撕裂。这个黑洞被标记出来,展示了这个迷人物体的解剖结构。



为了预测第一张黑洞图像,Jordy Davelaar和他的同事们建立了一个虚拟现实的模拟——有关这些迷人的天体之一。他们的模拟展示了被发光物质包围的黑洞。这种发光物质以漩涡般的方式消失在黑洞中,有时在极端的条件下,它会变成发光的等离子体。然后发出的光在黑洞的强大引力下发生偏转和变形。



事件视界望远镜(EHT)是一个由8架地面射电望远镜组成的行星规模的阵列,它是国际合作打造的,目的是捕捉黑洞的图像。在全球协调召开的新闻发布会上,EHT的研究人员透露他们成功了,首次公开了梅西耶87及其阴影中心存在超大质量黑洞的直接视觉证据。

这里看到的黑洞的阴影是我们所能看到的最接近黑洞本身的图像,它是一个完全黑暗的物体,光线无法从中逃逸。黑洞的边界——EHT得名的视界——比它投射的阴影小2.5倍,直径略小于400亿公里。虽然这听起来很大,但这个环的直径只有40微弧秒——相当于在月球表面测量一张信用卡的长度。

尽管组成EHT的望远镜没有物理上的联系,但它们能够用原子钟(氢微波激射器)来同步记录数据。这些观测数据是在2017年的全球运动中以1.3毫米的波长收集的。EHT的每台望远镜都产生了大量的数据——大约每天350 tb——存储在高性能的氦气硬盘上。这些数据被送到高度专业化的超级计算机上——被称为相关器——由马克斯·普朗克射电天文学研究所和麻省理工学院草垛天文台联合使用。然后,他们煞费苦心地使用合作开发的新型计算工具将这些信息转换成图像。



这幅艺术家的印象描绘了一个黑洞周围的环境,同时也展示出了由过热的等离子体和相对论性喷流组成的吸积盘。



图片版权:ESO/S.Brunier ​​​

1.WJ百科全书

2.天文学名词

3. eso

转载还请取得授权,并注意保持完整性和注明出处


黑洞是什么形状的?

理论上应该是正球形,但实际情况是无法观测。因为光出不来……在史瓦西半径内,一切已知的物理定律失效。其实想想也能知道,球形是空间中最稳定的形状。就像你吹一个肥皂泡,一定是一个球一样。

但如果黑洞是一种超过3维的存在的话,那它在高维的形态我们是无法感知的,只能说它在3维空间的投影是个球。

就像你用一个圆柱体在纸上做投影,你可以让这个投影变成矩形或是圆形,但仅通过一个投影是无法确定投影源是个什么形状的。

我比较相信黑洞就是我们所说的虫洞,3维的“洞口”在二维上的投影是个圆,就是说4维的“洞口”在3维的投影很有可能就是一个球……



黑洞由中微子冰通过一个聚集过程当聚集物质量超过霍金质量后形成。中微子冰就是中微子团在宇宙空洞-273.15C°冷极中凝结生成的,叫玻色-爱因斯坦冷凝态。这个态是宇宙第五态是一种超流体,所以,黑洞是特别神奇的超级液滴。



作为宇宙当中最为神秘的天体,黑洞一直是许多科学家们研究的热点。从爱因斯坦的相对论预言了黑洞的存在开始,到史瓦西提出了“史瓦西半径”,再到克尔发现的几种黑洞模型,再到霍金提出的“黑洞辐射”,人类对于黑洞的认识仍然知之甚少。那么黑洞到底是个什么玩意儿?它的形状是什么样的?真的是一个“洞”么?

洞我们都知道是什么样的,最常见的就是路上的下水井。如果把井盖拿走了,那就是一个洞。但是这种井洞是我们三维空间当中的“洞”,而黑洞却是一种高维度空间意义上的洞。换句话说,我们三维空间的洞,入口是一个二维的“圆形”,那么在更高维空间的“洞”,入口就可以是三维的球体。

所以黑洞的形状其实是一个球体,但是本质上却和丢了井盖的井一样,只是一个入口。在我们三维的世界里,想要分割一个三维空间的区域,需要用一个面,而这个面上的洞,就是一个由二维的线为边界形成的缺口;如果是在二维的世界里,分隔一个二维空间的区域,需要用一根线,而这个线上的洞,就是一个由一维的点为边界形成的缺口。

举个最简单的例子,如果一张A4纸是一个二维的空间,那么我们在这张纸上,用裁纸刀割去一个圆形,就成为了一个二维空间意义上的“洞”。对于这个二维世界里的生命来说,这个割掉的“洞”就是它们所无法理解的事情。因为它们概念中的“洞”,是我们上面提到的,是“由一维的点为边界,形成的缺口”。那么对于二维生物来说,这个“洞”就类似于我们人类三维空间的“黑洞”。

那么二维的生物能否探测这个“洞”,观察它内部的空间属性,了解它的构造呢?答案当然是否定的。就像我们人类对于黑洞,尽管有着许多种不同的猜测,但是始终无法去证实它一样。我们人类对于黑洞的了解,就如同二维生物对于这个“纸洞”的了解一样。只有它们跳出二维世界,来到更高维度的三维世界,才能了解到这个“洞”到底是什么东西,而我们人类也是一样的道理,或许只有到了更高维度的四维世界,才能真正了解黑洞到底是什么东西吧——

黑洞可能的形状是点,椭圆,球形。

其实大家都误解字面意思了。黑洞不是空间,黑洞是比中子星密度更大的“核”,是质量20倍太阳的超新星爆炸留下的“内核”,小于20倍太阳质量,大于8倍太阳质量,留下的“核”是“中子星”,小于8倍太阳质量留下的“核”是“白矮星”。“白矮星”燃烧完以后就会变成“黑矮星”。而我们的太阳,现在是属于“黄矮星”。

“中子星”的密度就已经能让光线弯曲前进了,黑洞的密度是它的无数倍,光线照到上面是不能返回的,所以前人就一直认为那是一个洞,现在的 科技 已经能解释黑洞。

当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,物质将不可阻挡地向着中心点进军,直到最后形成体积无限小、密度无限大的星体。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”诞生了

黑洞就是一个球体,说白了,黑洞就和恒星,行星一样,是一个天体。别被一些科幻片给骗了,黑洞不是一个洞,是一个密度无法想象的恒星内核,详细你可以先了解以下几点 矮星,中子星,超新星,然后你自行判断。

1967年,物理学家约翰·A·惠勒首次使用了“黑洞”这个术语,这是一个空间和时间区域的名称,它具有非常大的引力,即使是光量子,也不能“逃出”它的极限。它的大小是由引力半径决定的,作用的边界称为事件视界。

形状特征

在理想状态下,只要一个黑洞是孤立的,那么它就是一个绝对黑暗的空间。黑洞到底是什么,我们谁也不知道,只知道它们可能存在,但绝对是看不见它的。根据科学家们的探测,只有通过在事件视界区域的发光,才有可能确定它的存在。出现这种情况有两个原因:

(1)黑洞制造了一个弥漫气体尘埃云的图像,里面的密度在不断增加。

(2)通过黑洞附近的光量子,改变了它的轨迹。有时这种变形是如此巨大,以至于在它进入内部之前,光线在其周围弯曲可达数次。

根据天文学家的说法,这颗恒星是有形状的,它看起来就像一弯新月。这是因为面对观察者的一方,由于特殊的空间原因,看起来总是比另一方更明亮。“新月”中间的黑圈就是一个黑洞。

出现黑洞

有两种情况会导致黑洞的出现,即:a,压缩一个大质量恒星;b,压缩星系中心或其气体。当然,还有一些假设,认为它们是在宇宙大爆炸之后形成的,或者是在核反应中因出现大量能量所产生的。

黑洞主要有几种类型:超大质量的,通常位于星系的中心;初级的,假设它们在宇宙形成时,引力场和密度的均匀性会出现较大的偏差;量子–假设发生在核反应中,并且具有微观的尺寸。

黑洞的生命并非永恒

根据S.霍金的假设,黑洞会逐渐“减轻体重”,最后只留下基本粒子。

有一个假设,黑洞有一个相反物体,即:白洞。根据理论,一个白洞会在短时间内出现并解体,释放出能量和物质。科学家们相信,通过这种方式创建了一个特定的“隧道”,并且借助它,你可以移动很远的距离。

可以看出,对于黑洞的认识,我们只知道它可能存在,但是,它们在哪里?它们的里面是什么?目前还不清楚。

椭圆形

黑洞是球形的。因为黑洞的引力非常巨大,普遍比太阳的引力大几百倍,巨大的引力会使它塌缩成球形。

黑洞是椭圆形,有存在的证据。而白洞和虫洞都没有存在的证据!


黑洞长什么样子呀?

黑洞的外形,看起来像一个球体。黑洞是一个完全由引力控制的空间区域。引力在各个方向上的作用都是一样的,这意味着黑洞会把所有方向上的东西都拉向一个共同的中心点。我们可以通过观察太阳得到一些启发,太阳基本上就是一团气体,被万有引力不可抗拒地压缩成一个几乎完美的球体。黑洞的样子黑洞是球体,原则上就没有所谓的上、下或侧面。如果一个黑洞在宇宙中是完全孤立的(也就是说在黑洞的周围没有任何物质、天体,不会发生吸积并产生吸积盘和物质喷流),无论我们朝哪个方向看,看到的黑洞都像一个漆黑的圆环,并且周围环绕着一圈光,而这圈光是来自黑洞后面的发光天体所发出的光线。

黑洞长什么样子呢?

黑洞的样子是:黑洞由中心的一个由黎曼曲率张量出发构建的标量多项式在趋向此处发散的奇点和周围的时空组成,其边界为只进不出的单向膜:事件视界,事件视界的范围之内不可见。依据爱因斯坦的广义相对论,当一颗垂死恒星崩溃,它将向中心塌缩,这里将成为黑洞,吞噬邻近宇宙区域的所有光线和任何物质。黑洞的蒸发:由于黑洞的密度极大,根据公式我们可以知道密度=质量/体积,为了让黑洞密度无限大,而黑洞的质量不变,那就说明黑洞的体积要无限小,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,它的质量极大,体积极小。但黑洞也有灭亡的那天,按照霍金的理论,在量子物理中,有一种名为“隧道效应”的现象,即一个粒子的场强分布虽然尽可能让能量低的地方较强,但即使在能量相当高的地方,场强仍会有分布,对于黑洞的边界来说,这就是一堵能量相当高的势垒,但是粒子仍有可能出去。

上一篇:中国好声音第三场

下一篇:没有了