柯西不等式

时间:2024-12-23 22:45:36编辑:优化君

柯西不等式怎么证明?

柯西不等式公式:√(a^2+b^2)≥(c^2+d^2)。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。一般地,用纯粹的大于号“>”、小于号“,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,…,z)≤G(x,y,…,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。相关信息: 柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。

柯西不等式证明方法是什么?

柯西不等式:ai,bi∈R,求证:(a1^2+a2^2+...+an^2)*(b1^2+b2^2+...+bn^2)≥(a1*b1+a2*b2+...+an*bn)^2。柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。柯西(Cauchy Augustin-Louis,1789-1857),法国数学家,1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。

上一篇:孙道临电影

下一篇:没有了