导数和极限的关系

时间:2023-07-01 04:38:07编辑:优化君

导数与极限的关系:极限只是一个数,x趋向于x0的极限=f(x0)。而导数则是瞬时变化率,是函数在该点x0的斜率,导数比极限多了一个表达“过程”的部分。一个函数在某一点的导数描述了这个函数在这一点附近的变化率,极限是一种“变化状态”的描述,此变量永远趋近的值A叫做“极限值”。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续,不连续的函数一定不可导,因此导数也是一种极限。

导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。

上一篇:良法

下一篇:医美什么意思