运算律即为通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。既是重要的数学规律,也是数学运算固有的性质。运算律的五大定律有:加法结合律、加法交换律、乘法结合律、乘法交换律、乘法分配律。
运算律既是重要的数学规律,也是数学运算所固有的性质。
(1)交换律:
交换律是被普遍使用的一个数学名词,指能改变某物的顺序而不改变其最终结果。交换律为大多数数学分支中的基本性质,而且许多的数学证明都需要依靠交换律。即给定集合S上的二元计算,如果对S中的任意a,b满足a+b=b+a,则称满足交换律。
例如,在四则运算中,加法和乘法都满足交换律。加法交换律是指两个数相加,交换加数的位置,它们的和不变。即a+b=b+a。乘法交换律是指两个数相乘,交换因数的位置,它们的积不变。即axb=bxa。另外,在集合运算中,集合的交、并、对称差等运算都满足交换律。
(2)结合律:
结合律,指给定一个集合S上的二元运算,如果对于S中的任意a,b,c。有加法结合律a+b+c=(a+b)+c=a+(b+c)或乘法结合率ax(bxc)=(axb)xc,则称其运算满足结合律。
例如,在常见的四则运算中,加法和乘法都满足结合律。加法结合律是指三个数相加,先把前面两个数相加,再加第三个数,或者先把后面两个数相加,再和第一个数相加,它们的和不变。即表示为:(a+b)+c=a+(b+c)。
乘法结合律,指三个数相乘,先把前面两个数相乘,再乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。即表示为:(axb)xc=ax(bxc)。另外,在集合运算中,集合的交、并运算都满足结合律。
(3)分配律:
给定集合S上的两个二元运算x和+,若对任意S中的a,b,c有cx(a+b)=(cxa)+(cxb) ,则称运算x对运算+满足左分配律。若对任意S中的a,b,c有(a+b)xc=(axc)+(bxc), 则称运算x对运算+满足右分配律。
例如,在常见的四则运算中,乘法对加法和减法都满足分配律(即同时满足左右分配律),即两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加。
另外,在集合运算中,交运算对并运算满足分配律并运算对交运算满足分配律交运算对差运算满足分配律并运算对差运算满足分配律。